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Tau Alternative Splicing and Frontotemporal Dementia

Amar Kar, MS,* David Kuo, BS, 7 Rongqiao He, PhD, [ Jiawei Zhou, PhD,§ and Jane Y. Wu, MD, PhD*¥

Abstract: A number of neurodegenerative diseases are character-
ized by the presence of abundant deposits containing Tau protein.
Expression of the human tau gene is under complex regulation. Mutations
in the tau gene have been identified in patients with frontotemporal lobe
dementia. These mutations affect either biochemical/biophysical pro-
perties or the delicate balance of different splicing isoforms. In this
review, we summarize recent advances in our understanding of genetics
and molecular pathogenesis of tauopathies with the focus on fronto-
temporal lobe dementia. We review published studies on tau pre-mRNA
splicing regulation. Understanding molecular mechanisms of tauopa-
thies may help in developing effective therapies for neurodegenerative
tauopathies and related disorders, including Alzheimer disease.
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rontotemporal dementia (FTD) is characterized by memory
deficits and impaired cognition associated with degener-
ative changes in the frontal and temporal lobes of the brain.
FTD belongs to a group of genetically and phenotypically
heterogeneous disorders named tauopathies. A major neuro-
pathological hallmark of tauopathies is the filamentous deposits
containing hyperphosphorylated tau protein in neurons and
glia of affected individuals. The term tauopathy was first used
to describe familial dementia cases with abundant tau deposits
in the frontotemporal regions of affected brains.' Tauopathies
include Pick’s disease (PiD), corticobasal degeneration (CBD),
progressive supranuclear palsy (PSP), FTDs, Down Syndrome
(DS), several variants of Prion Diseases and Alzheimer disease
(AD).
The tau gene encodes microtubule-associated proteins
that stabilize the microtubule cytoskeleton and promote mi-
crotubule assembly. The fact that Tau dysfunction leads to
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neurodegenerative diseases indicates that Tau protein is critical
for neuronal function. A large number of studies show that Tau
plays an important role in neuronal integrity and axonal
transport by regulating microtubule stability and dynamics.>™*
The human tau gene is located on chromosome 17g21, occu-
pies over 100 kb, and contains 16 exons.>® Human tau gene
undergoes alternative splicing to produce six isoforms (Fig. 1).
Alternative splicing of exons 2, 3, and 10 generates tau proteins
containing 3 or 4 microtubule binding repeats, Tau3R or
TaudR.%” In the adult human brain, the ratio of 3R and 4R tau
transcripts is approximately one. This delicate balance of
Tau3R versus TaudR appears to be critical for neuronal
function. Mutations that disrupt this balance lead to the devel-
opment of tauopathy (Fig. 2, Table 1). Alternative splicing
of the tau gene is also regulated during development. Tau3R
is the predominant isoform in the fetal brain, whereas Tau4R
isoform increases to the same level as Tau3R during the post-
natal period.® The functional difference between Tau3R and
Tau4R remains unclear, although in-vitro studies suggest that
Taud4R is more efficient at promoting microtubule assembly
and has greater MT binding affinity than Tau3R.%'?

FTDP-17: CLINICAL AND
NEUROPATHOLOGICAL FINDINGS

Frontotemporal dementia occurs in both familial and
sporadic forms. One of the best-characterized form of FTDs is
frontotemporal dementia with Parkinsonism linked to chro-
mosome 17 (FTDP-17). Clinical manifestations of FTDs in-
clude behavioral/personality changes and motor disturbances
that are associated with severe cognitive impairment. Clinical
phenotypes of FTDs can vary significantly, ranging from
emotional blunting, loss of insight, disinhibition, mental rigidity,
mood instability, and impaired judgment/executive functions
to language deficit. Neuropathological features of FTDP-17
are frontotemporal atrophy with abundant Tau-containing
deposits in the frontotemporal cortex accompanied by neuro-
nal loss, gliosis, and cortical spongiform changes.">”"* The
Tau-containing deposits are often in the form of filamentous
inclusions named neurofibrillary tangles (NFTs) containing
hyperphosphorylated Tau protein. A series of genetic studies
of FTDP-17 patients have identified at least 25 different
mutations in the tau gene on chromosome 17. These and sub-
sequent studies have provided a molecular basis for our un-
derstanding of FTDP-17 pathogenesis.

The clinical presentation of FTDP-17 can differ not only
between mutations, but also within a single mutation and
sometimes within the same family. For example, clinical vari-
ability has been reported in nine UK families carrying the +16 tau
mutations.'®
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FIGURE 1. Diagrammatic representation of the six splicing
isoforms of human tau transcipts generated by alternate
splicing of the tau pre-mRNA. The human tau gene contains 16
exons. Alternative splicing of exon 2, 3, and 10 produces the
isoforms. The shaded boxes depict the MT binding repeats.

Similarly, for patients carrying the P301L missense
mutation, clinical diagnoses have ranged from PSP to CBD
and PiD.'7?° The N279K missense mutation typically leads to
clinical manifestations similar to PSP, with dementia.'®*!"*
On the other hand, similar clinical phenotypes can result from
different mutations. For instance, Parkinsonism is frequently
present in individuals with tau mutations affecting tau exon 10
splicing, whereas PiD without motor dysfunction has often
been diagnosed in individuals with different missense muta-
tions in exon 9 (G272V and K257T) and exon 13 (G389R)'®
(Fig. 2, Table 1). Taken together, these studies indicate that there
is extensive clinical overlap between the various tauopathies.
Emerging data suggest that the genetic background may affect
the phenotypic manifestations of a particular FTDP-17 muta-
tion. For example, a comparison of two kindreds with the
N279K mutation revealed different haplotypes.®® It is likely
that the clinical variations between different tauopathies asso-
ciated with tau gene mutations may result from compounding
effects by other genetic and/or epigenetic modifiers.

Neuropathological changes in FTDP-17 brains have
been characterized by the presence of abundant filamentous
inclusions containing hyperphosphorylated Tau protein. How-
ever, the morphology, Tau protein isoform composition, and
distribution of tau filaments/deposits appear to vary with the
types of tau mutations. Missense mutations located outside
exon 10, lead to the Tau pathology that is largely neuronal, with-
out a prominent glial component. Some of these mutations,
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such as missense mutation V337M in exon 12, lead to the
formation of both paired helical filaments (PHF) and straight
filaments (SF) that contain all six tau isoforms and resemble
those seen in AD.'® By contrast, a mutation in exon 13, G389R,
leads to the neuropathology more closely resembling PiD,
with a large number of Tau-immunoreactive Pick-body—like
and axonal inclusions' (Table 1). The P301L and P301S mis-
sense mutations within exon 10 lead to a pathology that is both
neuronal and glial'7~'%2* (Fig. 2, Table 1). Analysis of insoluble
Tau protein from brains of patients carrying the P301L muta-
tion has revealed the presence of narrow, twisted-ribbon
structures composed of Tau4R, with a small amount of Tau3R
isoform.

Intronic fau mutations that increase the inclusion of
exon 10 have been associated with a widespread neuronal and
glial pathology, with the glial component being more prom-
inent than that produced by the P301L and P301S mutations.
Ultrastructurally, wide twisted ribbon-like filaments composed
largely of Tau4R isoforms, have been observed in individuals
with the 73, 711, 712, 713, +14, and 716 intronic mutations1?>2’
(Fig. 2, Table 2). These filaments look much like those found
in the brains of CBD patients. Neuronal and glial pathology
has also been reported for several coding-region mutations that
increase exonlO inclusion (Table 1). It remains unclear what
factors determine the extent of neuronal versus glial involve-
ment and to what degree glial Tau pathology contributes to
clinical manifestations and progression of FTD patients.

It is obvious from these data that there is great variability
in the morphology of the Tau filaments in the patients carrying
different mutations. Although Tau filament morphology may
reflect the Tau isoform composition, other factors might be
involved. Two types of Tau filaments that are consistently
observed are the PHFs seen in AD brains that contain all six
tau isoforms, and the wide twisted-ribbon shaped filaments
composed mainly of Taud4R found in brains with tau splicing
mutations.

GENETICS OF FRONTOTEMPORAL DEMENTIAS

Frontotemporal dementias are genetically heteroge-
neous. FTDs share common clinical and neuropathological
features with other neurodegenerative diseases involving ex-
tensive neuronal loss and neurofibrillary tangle formation in
the brain, for example, Alzheimer disease (AD). It is not clear
yet, whether genetic players in neurodegenerative diseases
such as AD may also act as genetic modifiers for FTDs. The
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FIGURE 2. A schematic representation of tau mutations identified at exon 10 and its following intron. The 5’ splice site is marked as
5’SS. The arrows indicate various missense and splicing mutation found in this region.
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TABLE 1. Missense Mutations Associated With FTDP-17

Missense Exon MT Inclusion
Mutation Splicing Binding Phenotype Cells EM Body Reference
Exon 9
K257T No change Reduced PiD-like N Picks bodies 90
1260V Not studied NA NA N 83
L266V Decreased 4R Reduced PiD-like N 91
(Decreased Ex 10
utilization)
G272V No change Reduced FTDP-17 N 41
Exon 10
N279K Increased 4R Variable PSP-like N,G TF NFT 20
(Increased Ex 10
utilization)
AK280 Decreased 4R Reduced FTDP-17 NFT 84
L284L Increased 4R Normal AD-like N,G TF NFT, B-A 57
AN296 No change Reduced PSP-like N 86
P301L No change Reduced FTDP-17 N,G TF NFT, B-A 41
P301S No change Reduced FTDP-17, N,G TF NFT 24
CBD-like
S305N Increased 4R No change CBD-like N,G TF NFT 51
Exon 11
L315R No change Reduced PiD-like N,G Pick-like bodies 87
S320F No change Reduced PiD-like N Pick-like bodies 88
Exon 12
Q336R No change Increased PiD-like N TESF Pick-like bodies 89
V337M No change Reduced FTDP-17 N PESF NFT 13
Exon 13
G389R No change Reduced PiD-like N TESF Pick-like bodies 82
R406W No change Reduced PSP-like N PHE,SF NFT, Pick-like bodies 41

4R, Four microtubule binding repeat tau; PiD, Pick’s Disease; CBD, corticobasal degeneration; FTDP-17, frontotemporal dementia like parkinsonism-17; PSP, progressive
supranuclear palsy; AD, Alzheimer disease; PHF, paired helical filaments; TF, twisted filaments; NFT, neurofibrillary tangles; SF, straight filaments; N, neuron; G, glial cells; NA, data not

available.

genetics of FTDP-17 is best understood among different types
of familial FTDs. A number of mutations have been identified
in either exonic or intronic regions of the tau gene. These
mutations can be classified as missense mutations that alter
Tau peptides or splicing mutations that affect the balance of
different tau splicing isoforms. Missense mutations may alter
Tau protein sequence in the conserved residues within or near
the microtubule binding domains. Splicing mutations can
occur in the coding region or intronic regions. Some mutations
can affect both peptide sequence and alternative splicing of the
tau gene (eg, N279K). A few single nucleotide changes that do
not affect Tau peptide sequence (silent mutations [eg, L284L,
N296N, and S3058S]) affect alternative splicing of the tau gene
(Table 1). Missense mutations have been found in exon 9, 10,
12, and 13 (eg, K257T, G272V, K280, P301L, P301S, V337M,
G389R, and R406W) (Table 1). Most splicing mutations are
within or near intron 10 (eg, at +3, +11, +12, +13, +14, +16
nucleotides, Fig. 2, Table 2). In addition, sequence polymor-
phisms have been reported to define two specific haplotypes
(H1 and H2). It appears that carriers of the HIH1 tau hap-
lotype have a greater risk for PSP, CBD, PD, and FTD.?*>> The
HI1 haplotype is very common in the general population, and
the mechanism for this association is not clear.

© 2005 Lippincott Williams & Wilkins

There is a significant variation in clinical manifestations
of FTDP-17 patients. Patients with the same P301L mutation
may have distinct phenotypes.'® Conversely, patients with dif-
ferent haplotypes may share common clinical phenotypes.?® The
correlation between genotypes and phenotypes in FTDP-17
patients is not simple. It is likely that other genetic modifier
genes will emerge in the future.

Molecular Pathogenesis of FTDP-17

A large number of studies have been carried out since
genetic mutations were first reported in FTDP-17 patients.
Biochemical studies on the various missense mutations
associated with FTDP-17 have provided insights into the
function of Tau protein. Two models have been proposed to
explain the molecular mechanisms underlying neurodegener-
ation caused by mutations in the tau gene: loss-of-function
versus gain-of-function toxicity.'%'#**3* These two models are
not necessarily exclusive of each other. It is possible that both
cytotoxicity of mutant Tau proteins and loss of a balanced
regulation of the microtubule cytoskeleton contribute to the
pathogenesis of FTDs. Missense mutations including K257T,
G272V, K280, P301L, P301S, V337M, G389R, and R406W
affect the binding of Tau protein to the microtubules and
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TABLE 2. Splicing Mutations Associated With FTDP-17

Splicing Exon MT Inclusion
Mutations Splicing Binding Phenotype Cells EM Body Reference
Exon 10
AK280 Decreased 4R Reduced FTDP-17 N NFT 84
N296H Increased 4R NA CBD-like N,G PHF 85
S305N Increased 4R No change CBD-like N,G TF NFT 51
S305S Increased 4R NA PSP-like N,G TF NFT 22
E10+3 Increased 4R No change FTDP-17 N,G TF NFT 15
E10+11 Increased 4R No change FTDP-17 N NFT 26
E10+12 Increased 4R No change FTDP-17 N,G TF NFT 80
E10+13 Increased 4R No change FTDP-17 N,G TF NFT 41
E10+14 Increased 4R No change FTDP-17, PSP-like N,G TF NFT 41
E10+16 Increased 4R No change AD-, PiD, PSP, CBD-like, N,G TF NFT 41
FTDP-17

4R, Four microtubule binding repeat tau; PiD, Pick’s disease; CBD, corticobasal degeneration; FTDP-17, frontotemporal dementia like parkinsonism-17; PSP, progressive
supranuclear palsy; AD, Alzheimer disease; PHF, paired helical filaments; TF, twisted filaments; NFT, neurofibrillary tangles; SF, straight filaments; N, neuron; G, glial cells; NA, data not

available.

microtubule assembly'#3*33 (Table 1). Mutant Tau protein has
an increased tendency to self-assemble into paired helical
filaments (PHFs) in vitro.>>*” It has been suggested that the
sequence 306-VIVYK-311 act as a nucleation sequence to
initiate PHF formation.*®?° Missense mutations associated
with FTDP-17 such as R406W and V337M lead to increased
Tau phosphorylation that is associated with reduced micro-
tubule binding and increased Tau aggregation.*® Most splicing
mutations disrupt the delicate balance between Tau3R and
TaudR isoforms. A general picture that has emerged from
biochemical studies is that both missense and splicing muta-
tions in the tau gene lead to the dissociation of Tau protein
from mictotubules and an increase in the pool of unbound Tau
that is believed to cause NFT formation.

Missense mutations that decrease the affinity of Tau for
microtubules are likely to increase the level of free Tau protein.
Splicing mutations, on the other hand, increase the amount of
Tau4R while decreasing the level of Tau3R. Analyses of NFTs
from affected brains show that NFTs contain predominantly
Tau4R.*>*' Biochemical studies suggest that Tau4R has stronger
activity in promoting microtubule assembly and stabiliza-
tion than Tau3R.'? It has been proposed that Tau4R and Tau3R
may bind to distinct sites on microtubules.'"*** In-vitro cell
culture experiments suggest that expression of mutant Tau
reduces the axonal transport of vesicles and cell organelles,
leading to the starvation of the synapse and increased oxidative
stress and neurodegeneration.****> There is no single unified
theory to explain the molecular pathogenesis of all tau mu-
tations. In addition, protein kinases and phosphatases have
been implicated in post-translational modification of Tau
proteins. These studies have been covered by several recent
reviews.***” In addition, Tau function is modulated by chap-
erones such as Hsp70 and CHIP (carboxyl terminus of the
Hsc70-interacting protein), and this may influence the level
of normal Tau protein and clearance of the mutant Tau
proteins.*®4°

A number of studies have been carried out to understand
the mechanisms regulating the ratio of Tau4R/Tau3R since the

S32

report of splicing mutations in FTDP-17 patients. Two models
have been proposed for the regulatory elements in tau pre-
mRNA, a stem-loop model and a linear cis-element model
(Fig. 3). The nucleotide sequence around the 5’ splice site,
biochemical experiments, thermodynamic analysis, and NMR
structural analyses support the presence of a stem loop
structure.'*3°->° In this model, the nucleotide sequence flanking
the 5’ splice site of exon 10 forms a stem-loop structure that
prevents the maximal binding of Ul-snRNP to this 5’ splice
site. Consistently, alterations in the mutant background by
inserting compensatory base-pairing nucleotides that restore the
predicted stem-loop pairing or binding to an antisense oligomer
result in the wild-type tau exon 10 splicing pattern.’®>® This
model provides a good explanation for the enhancement of exon
10 inclusion by various intronic or exonic point mutations in
this region. In the linear cis-element model, multiple weak
interactions between factors binding to sequences inside intron
9, exon 10, and intron 10 act in a linear fashion to modulate the
splicing of exon 10. This model was proposed based primarily
on mutagenesis experiments carried out using a tau minigene
containing exon 10 with 33 and 51 nucleotides flanking intron
sequence inserted into a heterologous HIV tat gene splicing
cassette.””° It is interesting to note that the protein-RNA
interactions involved in exon 10 alternative splicing regulation
are highly dynamic and that the two models do not exclude each
other. The PCR results obtained from the tau minigene by
Schellenberg and colleagues do not rule out the possibility of
the stem-loop structure. It is possible that multiple RNA-protein
interactions modulate the stability of the stem-loop structure in
cells. Such RNA-protein interactions may undergo changes
during development, offering one explanation for the devel-
opmental regulation of tau exon 10 splicing.

Both models described above for tau exon 10 splicing
regulation suggests that trans-acting factors interact with splicing
regulatory sequences inside and flanking exon 10, and that
mutations associated with FTDP-17 may affect such RNA-
protein interactions. A systematic search for proteins that
modulate tau exon 10 alternative splicing has been initiated

© 2005 Lippincott Williams & Wilkins
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using an expression cloning strategy (Wu, unpublished results).
Several protein factors have been identified using biochemical
assays or transfection-PCR approaches that interact with tau
pre-mRNA and influence tau exon 10 splicing, including SR-
domain containing proteins and an hnRNP protein.’**-** The
physiological roles of these protein factors in regulating tau
exon 10 splicing remains to be elucidated using strategies such
as knock-out.

Animal Models of FTDP-17

A number of attempts have been made to create animal
models for tauopathies, in particular, FTDP-17. This topic has
been covered in several recent reviews.®* *” Transgenic mice
have been made expressing the human Tau protein in neurons
and glia. Abundant Tau4R filaments were found in mouse
models with either P301L or P301S mutations.®®’ The fila-
mentous Tau was hyperphosphorylated, similar to that found
in affected human brains. In such mice, hyperphosphorylation
of Tau preceded filament formation, axonal transport was

© 2005 Lippincott Williams & Wilkins

affected, and mice showed severe memory deficits.”>?

Various mouse models of tauopathies indicate a connection
between the development of Tau filaments and neurodegen-
eration. Interestingly, rodent tau gene sequence in intron 10
resembles that in human FTDP-17 patients carrying intronic
mutations. Consistently, post-natal mice and rats express
predominantly Tau4R, similar to that in FTDP-17 patients®’
(Jiang and Wu, unpublished observation). The modeling of tau
mutations with splicing variants expressing higher Tau4R has
been more complicated, and the pathology was seen more in
the ventral root and spinal cord, in contrast to human brain
lesions.”*”* In C.elegans and D. melanogaster, overexpression
of the tau gene resulted in nerve cell degeneration, but with
apparent absence of Tau filaments,”>’ although hyperphos-
phorylation of tau is seen in flies.”” Inhibition of GSK3-beta
reverses the axon transport and locomotor phenotypes in flies
overexpressing human Tau protein.”® Also a recent study in
C.elegans expressing P301L and V337M 4R-tau isoforms have
shown increased neuronal dysfunction and accumulation of
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insoluble tau.” Studies are still underway to further our
understanding of genetic interactions involved in the patho-
genesis of tauopathies.

FUTURE DIRECTIONS AND CONCLUSION

Since cloning of the human tau gene and, in particular,
the discovery of tau mutations in FTD patients, genetic,
molecular, biochemical, and animal studies have significantly
advanced our understanding of tau gene function and its
changes in tauopathies. Multiple tau gene alterations have
been reported, including pathogenic mutations for FTDP-17
and polymorphisms contributing to risk factors for other forms
of tauopathies. Underlying mechanisms include changes in
the biochemical/biophysical properties of Tau proteins and
disruption of the delicate balance of distinct tau splicing iso-
forms, leading to abnormal behaviors of these tau gene
products in neurons affected. The variation in the clinical
manifestations and the lack of simple genotype-phenotype cor-
relations suggest the existence of genetic or epigenetic mod-
ifier factors. Such modifiers, in theory, can be enzymes that
affect the post-translational modifications/clearance of Tau
proteins or factors that influence the balance of different tau
splicing isoforms at the post-transcriptional level. Although
a common theme is emerging that the hyperphosphorylated
Tau protein that accumulates in filamentous forms disrupts
neuronal function, it remains to be elucidated which protein
kinases/phosphatases and protein degradation enzymes play
crucial roles for developmental regulation and pathologic
alterations of tau gene function. Animal models are being
established to study human tauopathies. We are just at the
very beginning stage of understanding the role of alterna-
tive splicing in tau gene function and in the pathogenesis
of neurodegenerative disorders such as frontotemporal lobe
dementia.
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