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ABSTRACT
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and still remains
incurable. Although immunotherapeutic vaccination against GBM has demonstrated immune-stimulating
activity with some promising survival benefits, tumor relapse is common, highlighting the need for
additional and/or combinatorial approaches. Recently, antibodies targeting immune checkpoints were
demonstrated to generate impressive clinical responses against advanced melanoma and other
malignancies, in addition to showing potential for enhancing vaccination and radiotherapy (RT). Here, we
summarize the current knowledge of central nervous system (CNS) immunosuppression, evaluate past
and current immunotherapeutic trials and discuss promising future immunotherapeutic directions to treat
CNS-localized malignancies.
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Introduction

Glioma is the most common primary malignant brain tumor,
accounting for nearly 80% of cases in adults. Glial-derived tumors
are classified based on histologic subtype, which include glial
fibrillary acidic protein positive (GFAPC) astrocytic tumors, oli-
godendrogliomas, ependymomas and a mixture of the subtypes.1

Of these, astrocytic glioma grade IV, otherwise referred to as
GBM, is the most common and deadly subtype with a median
survival of 14.6 mo post-diagnosis and an average 5-year survival
rate of less than 5%.2,3 Current treatments that combine resection,
RT and chemotherapy are unable to prevent tumor recurrence
based on residual disease originating from the invading margins/
inoperable surgical bed. Despite previous translational efforts that
include new approaches for gene therapy, targeted chemothera-
peutics and/or radiotherapeutic modalities, the standard of care
for newly diagnosed GBM has remained unchanged for the past
10 y, highlighting the need for better treatment options. Also,
there is no standard of care treatment for patients with recurrent
GBM. The prevalence of metastatic tumors in the CNS greatly
exceeds the number of GBM cases, yet, overall survival (OS) is
similarly dismal. In this review, we discuss historical efforts, as
well as new and/or expanded approaches that include vaccina-
tion, immune checkpoint blockade, adoptive T cell transfer, as
well as combinatorial immunotherapy for the rationale design to
durably control aggressive tumors in the CNS.

CNS tumors and Immunosuppression

The CNS was originally considered to be an immune-privileged
site, in part, based on the superior growth of rat osteosarcoma
cells that were intracranially injected into the brain compared

to growth subcutaneously or intramuscularly.4 More recent
observations indicate that the CNS is immunospecialized, based
on the considerable interaction with the peripheral nervous sys-
tem and the non-parenchymal ventricles, meninges and sub-
arachnoid space.5 Inflammatory stimuli, including those
induced by brain tumors, increase CNS immunogenicity due to
microglial activation and blood–brain barrier (BBB) disrup-
tion.6 The latter occurs secondary to glioma cell invasion of the
basement membrane.7,8 BBB disruption facilitates the drainage
and presentation of CNS antigens to the cervical lymph nodes,
which primes T cells for homing and infiltration to the tumor
parenchyma. Interestingly, the pattern of leukocyte infiltration
into GBM is not identical among tumors, with specific genetic
subtypes including the mesenchymal profile, possessing higher
levels of T cell infiltration.9 Coincidently, the mesenchymal
subtype is almost universally observed in recurrent GBM after
standard of care therapy.10 Commensurate to the inflammatory
signals (i.e. cytokines, chemokines, growth factors) that brain
tumors induce, are potently immunosuppressive mechanisms
that include the tryptophan catabolic enzyme, indoleamine 2,3
dioxygensase 1 (IDO1). This rate-limiting enzyme is expressed
in 96% of resected glioblastoma, with the upregulation correlat-
ing with a worse patient prognosis.11,12 IDO1 converts trypto-
phan into kynurenines, with the latter catabolite mediating
inhibition/induction of apoptosis in effector T cells and/or
amplification of immunosuppression by CD4CCD25CFoxP3C

regulatory T cells (Treg) (Fig. 1).13 Preclinically, tumor-derived
IDO1 is essential for Treg accumulation and immunosuppres-
sion, since malignant brain tumors deficient for the enzyme
result in spontaneous rejection mediated by a T-cell-dependent
mechanism.12 Paradoxically, Treg incidence in newly diagnosed
patient GBM is a neutral prognostic factor.14 Importantly, it
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has yet to be determined whether this finding holds true in
recurrent GBM and this may be an important clinical consider-
ation since our laboratory has experimental evidence from a

model of spontaneously forming glioma suggesting that IDO1
functions differently in brain tumors depending on the newly
diagnosed vs. recurrent context (unpublished observation). An

Figure 1. Mechanisms and immunotherapeutic targets for glioblastoma (GBM). GBM cells, tumor-resident dendritic cells (DC) and myeloid-derived suppressor cells
(MDSC) express indoleamine 2,3 dioxygenase 1 (IDO1). IDO1 expression is regulated by the Jak/STAT and NF-kB pathways, which is induced by IFNg- and TGF-b-receptor
activation, respectively. IDO1 is a cytoplasmic enzyme that metabolizes tryptophan (Trp) to kynurenine (Kyn). Within the GBM cell, Kyn complexes with the aryl hydrocar-
bon receptor (Ahr), cytoplasmically, facilitating the nuclear translocation and further docking with aryl hydrocarbon receptor nuclear translocator (ARNT) to transcription-
ally regulate IL-6, acting as an autocrine loop that amplifies and sustains IDO1 expression. Simultaneously, extracellular Kyn suppresses T effector responses while
activating regulatory T cell (Treg; CD4CCD25CFoxP3C) function through a presumably overlapping mechanism. IDO1 directly activates NF-kB signaling which maintains
and/or upregulates TGF-b expression. Increased TGF-b levels upregulate CTLA-4 and GITR expression by Treg. CTLA-4 interacts with B7.1 (CD80) and B7.2 (CD86) on DC,
resulting in the induction of IDO1 (in DC) and commensurate downregulation of antigen presentation to T cells. Both GBM and MDSC express TGF-b, which synergizes
with PD-L1 to suppress the T cell effector response via interaction with PD-1. Moreover, interleukin-10 (IL-10)- and prostaglandin E2 (PGE2)-expressing MDSC act on their
cognate receptors expressed by GBM to ramify Jak/STAT and NK-kB-mediated signaling. DNA released by dead/dying GBM cells is phagocytized by resident DC to activate
the STING pathway leading to Type 1 interferon (a/b) expression, supporting increased effectiveness of anti-GBM immunity. PD-1 is highly expressed by tumor-infiltrating
cytotoxic T cells and PD-L1 is upregulated on cancer/stromal cells in response to T-cell-secreted IFNg. Blocking the interaction of PD-1-expressing T cells with PD-L1 leads
to increased effector function and enhanced GBM immunity. Targets for immunomodulation are shown in red. Note: Although IDO1 expression and signaling are shown
in GBM cells, shared signaling patterns are presumed to be present in DC and MDSC as well. TCON: conventional CD4

CFoxP3¡ T cell; TREG: regulatory CD4
CFoxP3C T cell;

TC: cytotoxic CD8
C T cell; INCBO24360/NLG919: inhibitors of IDO1; PS1145: inhibitor of the NF-kB pathway; TRX518: humanized monoclonal agonistic antibody for GITR;

Ipilimumab: humanized monoclonal antibody for CTLA-4; LY2109761: TGF-b receptor kinase inhibitor; MK-3475/MDX-1106: humanized monoclonal antibodies to PD-1;
MEDI4736/MPDL3280A: humanized monoclonal antibodies to PD-L1; Anti-Gr1: mSC-depleting antibody; Daclizumab: humanized anti-CD25 (IL-2Ra); STING: stimulator of
interferon genes; TBK1: TANK-binding kinase 1; IRF3/7: interferon regulatory factor 3/7; STAT3: signal transducer and activator of transcription 3; A.18,72,84-93
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alternative immunosuppressive pathway that contributes to T
cell dysfunction is mediated by interactions between PD-1 and
PD-L1, resulting in the loss of T cell effector function. Notably,
both human GBM15 and tumor-infiltrating macrophages16

express high levels of PD-L1, suggesting the need for multi-cel-
lular targeting for optimal immunotherapeutic benefit. Similar
to other malignancies, cytotoxic T cells infiltrating GBM
express high levels of PD-1.17 A third dominant and critical
immunosuppressive pathway relevant to brain tumors is medi-
ated by CTLA-4, which simultaneously inhibits effector T cell
activation/proliferation and Treg activation/function in
GBM.18 Interestingly, the interaction of CTLA-4 with dendritic
cell (DC)-expressed B7, induces IDO1 expression.19 Thus, it
will be interesting to determine whether co-inhibiting CTLA-4
and IDO1 lacks an additive/synergistic impact against brain
tumors or if other undiscovered immunosuppressive mecha-
nisms remain independent of the interaction.

Therapeutic approaches

Vaccination
Therapeutic vaccination against cancer induces and/or rescues
unproductive immune responses against tumor antigens intrin-
sically expressed or cross-presented by stromal cells.20 This
immunity can be generated against mutated peptides,21 or
post-translational modifications.22 To generate/rescue func-
tional antitumor T cell responses, vaccines co-administer tumor
peptide(s) and immuno-stimulatory adjuvant(s) to license DC
for activating and expanding tumor-reactive T cells. Determin-
ing the optimal peptide(s) for targeting is a challenging task
since many tumor-associated antigens are identified as “self” by
the immune system.23 Given the shared neuroectodermal line-
age of astrocytes and melanocytes, there is relatively significant
overlap of shared tumor associated antigens between GBM and
melanoma.24 This complicates targeting GBM with high speci-
ficity given the obvious potential for immunization against nor-
mal melanocytes.24 In practice, however, this phenomenon has
not been observed in the majority of previously vaccinated
GBM patients.25 Notably, ex vivo loading of a newly diagnosed
GBM patient’s DC with six GBM tumor-associated peptides
can generate vaccine-specific immune responses that are not
associated with an OS advantage.26 By vaccinating GBM
patients with DC loaded with glioma-associated peptides com-
bined with adjuvant poly-ICLC, approximately 60% of patients
demonstrate glioma-associated immune responses, with <10 %
of recurrent glioma patients demonstrating stable tumor regres-
sion.27 Overall, these studies highlight an important concept
suggesting that, stimulating an immune response against exclu-
sively tumor-associated peptides is not sufficient for controlling
malignant progression in the majority of patients.

Tumor neoantigens are considered to have higher potential
for therapeutic vaccination. These neoantigens are generated
during tumor evolution,28 often resulting in unique targets
within individual patients.23,28 Some neoantigens, however, are
present in a higher percentage of GBM, providing rational tar-
gets for focusing vaccination efforts against. One of the best
characterized neoantigens is the epidermal growth factor recep-
tor variant III (EGFRvIII), which is present in »20–30% of
newly diagnosed GBM,29 carrying an independent negative

prognosis for patients who survive >1 y after diagnosis.30

EGFRvIII is the result of an in-frame deletion leading to a new
antigenic junction,31 capable of inducing both cellular and
humoral immunity.32 Rindopepimut, a 13-amino acid EGFR-
vIII peptide vaccine conjugated to adjuvant, is currently utilized
for targeting this neoantigen. Phase II EGFRvIII peptide vac-
cines have demonstrated vaccine immunogenicity and increased
OS, with median at approximately 24 mo from diagnosis, com-
pared to historical controls (Table 1).32-34 Survival advantage of
treated patients correlate to the magnitude of induced tumor
immunity, with tumor relapse occurring with loss of EGFRvIII
expression based on immunohistochemical detection.32-34

While promising, these data could also indicate that, sensitivity
to EGFRvIII detection by IHC is masked by patient-derived
EGFRvIII antibodies or post-translational modification(s) as
well as the independent loss due to radiation and/or chemo-
therapy.35 A two-arm randomized phase III trial (ACT IV) for
recently diagnosed GBM is currently underway to better assess
the efficacy of this approach (NCT01480479) (Table 2). With
regard to targeting neoantigens in lower-grade glioma, mutant
isocitrate dehydrogenase type 1 (IDH1) is carried by more than
70% of diffuse grade II and III gliomas,36 and targeting IDH1
by peptide vaccination has shown efficacy.37

To address tumor relapse from generation of antigenic var-
iants in the process of targeting a single peptide, alternative vac-
cine approaches have been created to target a broad range of
antigens, simultaneously. One exciting approach utilizes heat
shock protein (HSP) peptide complexes (HSPPC-96) derived
from a GBM patient’s resected tumor. Intracellular HSP physi-
ologically binds peptides with extracellular HSP capable of
mediating the internalization of HSPPC-96 into APCs for effi-
cient MHC-I and MHC-II presentation of tumor peptides.38,39

Clinically, HSPPC-96 vaccine generates a tumor-reactive T cell
response.39 In a phase II, single arm trial for surgically resect-
able recurrent GBM, HSPPC-96 vaccine increased the median
OS to an impressive 42.6 weeks, which provides a substantial
survival benefit when compared to historical controls.25 Inter-
estingly, a predictor of poor response to vaccination was lym-
phopenia at the time of vaccination, a side effect likely
attributable to previous chemotherapy, radiation and/or deca-
dron administration.25 An alternative approach to targeting
multiple epitopes, simultaneously, is utilizing pulsed autologous
DC with tumor lysate. This approach, identified as DCVax®-L,
is currently in a Phase III trial for patients with newly-diag-
nosed GBM (NCT00045968).

Over the past 3 y, technological advances and clinical dis-
coveries have sparked the development of next-generation vac-
cines. The first observation from both preclinical subcutaneous
fibrosarcoma and clinical melanoma studies demonstrated that
CD8C T cells responsible for eradicating tumors must recog-
nize tumor-specific peptides that have high affinity for MHC-
I.40-42 In preclinical subcutaneous fibrosarcomas, peptide affin-
ity determines whether a peptide can be cross-presented by
tumor-associated macrophages and thereby serve to optimally
stimulate T cells to produce high levels of cytokine in the tumor
microenvironment.40 Recent technological advances now facili-
tate these “rejection” antigens to be reliably identified using
(i) genome-wide exomic sequencing to find mutations and
(ii) peptide affinity algorithms to identify peptides with high
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Table 1. Completed clinical trials of immunotherapy for glioma.

Trial Name Phase
Sample Size/
Type of Glioma

New/
Recurrent

Therapeutic
Modality

Primary and
Secondary
Endpoints Result/Outcomes

Clinical Trial ID/
Reference Number

Dendritic cell (DC) vaccines
Immune response in patients

with newly diagnosed
glioblastoma multiforme
treated with intranodal
autologous tumor lysate-
dendritic cell vaccination after
radiation chemotherapy

Pilot 10 New DC vaccine PFS and OS PFS: 9.5 mo
OS: 28 mo

94

Integration of autologous
dendritic cell-based
immunotherapy in the
primary treatment for patients
with newly diagnosed
glioblastoma multiforme: a
pilot study

Pilot 8 (7 completed) New DC vaccine PFS and OS PFS at 6 mo: 75%,
OS: 24 mo

95

Therapeutic vaccination against
autologous cancer stem cells
with mRNA-transfected
dendritic cells in patients with
glioblastoma

Pilot 11 (7 received DC
vaccine)

New DC vaccine
against cancer
stem cells

PFS and OS PFS: 694 d,
OS: 759 d

NCT00846456.96

Dendritic cell vaccination in
glioblastoma after
fluoresence-guided resection

Pilot 5 New DC vaccine PFS and OS PFS: 16.1 mo
OS: 27.4 mo

97

a-type-1 polarized dendritic cell-
based vaccination in recurrent
high-grade glioma: a phase I
clinical trial

I 9 (7 with GBM, 2
with WHO grade III)
with HLA-A2 or A24

genotype

Recurrent DC vaccine SD and PD 1 SD (11%)
8 PD (89%)

98

Phase I trial of a multi-epitope-
pulsed dendritic cell vaccine
for patients with newly
diagnosed glioblastoma

I 21 (17 new GBM, 3
recurrent GBM, 1
brainstem glioma)

New C
Recurrent

multi-epitope-
pulsed DC vaccine

PFS and OS newly diagnosed:
PFS: 16.9 mo
OS: 38.4 mo

26

Dendritic cell vaccination
combined with temozolomide
retreatment: results of a phase
I trial in patients with
recurrent glioblastoma
multiforme

I 14 (9 completed
initial phase, 3
yield of DC

vaccine was too
low)

Recurrent DC vaccine with
pulsed autologous

tumor cells
previously exposed
to TMZ in vivo C

TMZ

OR and PFS 2 with OR
22% with 6-mo PFS

99

Gene expression profile
correlates with T cell
infiltration and relative
survival in glioblastoma
patients vaccinated with
dendritic cell immunotherapy

I 23 New C
Recurrent

DC vaccineC
toll-like receptor

agonists
(imiquimod or poly-

ICLC)

OS and survival
rate

OS: 31.4 mo
survival rates: 1 y
(92%) 2 y (55%), 3 y
(47%)

NCT00068510 9

A phase I/II clinical trial
investigating the adverse and
therapeutic effects of a
postoperative autologous
dendritic cell tumor vaccine in
patients with malignant
glioma

I/II 17 (16 GBM, 1
WHO grade III)

New C
Recurrent

DC vaccine OS and survival
rate

OS: 525 d,
5-y survival 18.8%

100

Induction of CD8C T-cell
responses against novel
glioma-associated antigen
peptides and clinical activity
by vaccinations with a-type1
polarized dendritic cells and
polyinosinic-polycytidylic acid
stabilized by lysine and
carboxymethylcellulose in
patients with recurrent
malignant glioma

I/II 22 (13 GBM, 5
anaplastic

astrocytoma, 3
anaplastic

oligodendroglioma,
1 anaplastic

oligoastrocytoma).
All with HLA-A2

genotype.

Recurrent a-type 1 polarized DC
with synthetic

peptides for glioma-
associated antigen
epitopes C poly-

ICLC

immune
response
and PFS

58% with positive
immune response
to at least one

glioma-associated
antigen, 9 (41%)

with PFS at least 12
mo

27

Adjuvant immunotherapy with
whole-cell lysate dendritic
cells vaccine for glioblastoma
multiforme: a phase II clinical
trial

II Randomized: 18
experimental vs. 16

control

New DC vaccineC surgery
C RT C chemo vs.
surgeryC RTC

chemo

PFS, OS, and
survival
rates

PFS: 8.5 mo vaccine vs.
8.0 mo control (p D
0.075). OS: 31.9 mo
vaccine vs. 15.0 mo
control (p < 0.002).
survival rates 1 y

(88.9%) 2 y (44.4%),
3 y (16.7%) vaccine
vs. One y (75.0%), 2
y (18.8%), and 3 y

(0%) control

101

(Continued)
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Table 1. (Continued )

Trial Name Phase
Sample Size/
Type of Glioma

New/
Recurrent

Therapeutic
Modality

Primary and
Secondary
Endpoints Result/Outcomes

Clinical Trial ID/
Reference Number

EGFRvIII vaccines
A pilot study of IL-2Ra blockade

during lymphopenia depletes
regulatory T-cells and
correlates with enhanced
immunity in patients with
glioblastoma

Pilot Randomized:3
experimental vs.3

control

New EGFRvIII
peptide vaccine
Cdaclizumab

(anti-IL-2Ra MAb)
vs. vaccine
C saline

safety and
immune
response

no autoimmune
toxicity, decreased
CD4CFoxp3C Tregs
with daclizumab

NCT00626015.102

An epidermal growth factor
receptor variant III-targeted
vaccine is safe and
immunogenic in patients with
glioblastoma multiforme

I 12 New *DC vaccine
targeting

EGFRvIII antigen

Time to
progression
(TTP) and

OS

TTP from vaccination:
6.8 mo,
OS: 22.8 mo

103

Immunologic escape after
prolonged progression-free
survival with epidermal
growth factor receptor variant
III peptide vaccination in
patients with newly
diagnosed glioblastoma

II 18 New EGFRvIII
peptide vaccine

PFS, OS, and
immune
response

6-mo PFS was 67%
after vaccination
and 94% after
diagnosis.

OS: 26.0 mo,
significantly
longer than

matched cohort
(p D 0.0013).

Development of
specific antibody
(p D 0.025) or
delayed-type
hypersensitivity
(p D 0.03) had

significant effect on
OS

32

Greater chemotherapy-induced
lymphopenia enhances
tumor-specific immune
responses that eliminate
EGFRvIII-expressing tumor
cells in patients with
glioblastoma

II 22 New EGFRvIII peptide
vaccinewith either
standard-dose or

dose-intensified (DI)
TMZ

PFS, OS, and
immune
response

PFS 15.2
mo OS 23.6 mo

Both humoral and
cellular vaccine-
induced immune
responses are
enhanced by DI

TMZ

34

A phase II, multi-center trial of
rindopepimut (CDX-110) in
newly diagnosed
glioblastoma: the ACT III study

II 65 New Rindopepimut
(CDX-110)

PFS and OS PFS at 5.5 mo
was 66%

(approximately 8.5
mo from diagnosis).
OS: 21.8 mo. 36-mo

OS was 26%

33

Heat-shock protein (HSP)
vaccines

Pilot study of intratumoral
injection of recombinant heat
shock protein 70 in the
treatment of malignant brain
tumors in children

Pilot 12 (2 GBM, 2
astrocytoma, 3
anaplastic

astrocytoma, 2
anaplastic

ependymoma, 1
choroid plexus
carcinoma, 1
primitive

neuroectodermal
tumor, 1 B-cell non-

Hodgkin’s
lymphoma).

New HSP 70 vaccine CR and PR 1 CR (8%)
1 PR (8%)

104

Heat-shock protein peptide
complex-96 vaccination for
recurrent glioblastoma: a
phase II, single-arm trial

II 41 Recurrent HSPPC-96 vaccine OS and survival
rate

OS: 42.6 weeks.90.2%
alive at 6 mo29.3%
alive at 12 mo27

(66%) lymphopenic
prior to therapy

leading to decrease
OS.

25

Other peptide vaccines
Wilms tumor 1 peptide

vaccination combined with
temozolomide against newly
diagnosed glioblastoma:
safety and impact on
immunological response

I 7 New Wilms tumor
1 peptide
vaccination

PFS All patients
still alive at time of
study publication.
PFS: 5.2–49.1 mo

105

(Continued)
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peptide–MHC affinity.41,43 This approach has been validated
preclinically demonstrating that, vaccinating against a model
“rejection peptide” achieves tumor destruction of aggressive
melanoma.21,44 Creating personalized vaccines to target these
predicted rejection antigens is now recognized as a promising
approach against non-CNS tumors and should be studied with
regard to whether similar efficacy is achievable against aggres-
sive tumors in the CNS.

Checkpoint blockade
Over the past 15–20 y, it has become recognized that

inhibitory receptors on T cells play an important role in

suppressing T-cell-mediated antitumor responses.45 These
inhibitory receptors are referred to as immune checkpoints
due to their role in preventing inappropriate/prolonged acti-
vation. To date, the checkpoints that have been targeted
with the most impressive clinical antitumor responses are
CTLA-4 and PD-1. During CD8C T cell activation, CTLA-4
is upregulated and inhibits further T cell activation and
proliferation.46 CTLA-4 is also expressed on CD4C T cells
where it functions to enhance Treg-mediated immunosup-
pression.47 Ipilimumab, a humanized CTLA-4 antibody, was
the first FDA-approved immune checkpoint inhibitor.
Much clinical experience with ipilimumab has been in

Table 1. (Continued )

Trial Name Phase
Sample Size/
Type of Glioma

New/
Recurrent

Therapeutic
Modality

Primary and
Secondary
Endpoints Result/Outcomes

Clinical Trial ID/
Reference Number

Viral vaccines
Phase IB study of gene-mediated

cytotoxic immunotherapy
adjuvant to up-front surgery
and intensive timing radiation
for malignant glioma

IB 13 (12 completed
therapy)

New Adenoviral
vector with herpes

simplex virus
thymidine kinase

gene C valacyclovir

Survival rate 33% alive at 2 y and
25% alive at 3 y

106

Autologous vaccines
First clinical results of a

personalized
immunotherapeutic vaccine
against recurrent,
incompletely resected,
treatment-resistant
glioblastoma multiforme
(GBM) tumors, based on
combined allo- and auto-
immune tumor reactivity

Pilot 9 Recurrent Gliocav (ERC 1671)
composed of
autologousC

allogeneic antigens
C GM-CSF C low-

dose
cyclophosphamide

OS OS: 100% alive
at 26 weeks, 77%
alive at 40 weeks

107

Phase I trial of a personalized
peptide vaccine for patients
positive for human leukocyte
antigen–A24 with recurrent or
progressive glioblastoma
multiforme

I 12 (all positive for
HLA-A24)

Recurrent ITK-1 peptide
vaccine

safety and
immune
response

No serious adverse
drug reactions.
Dose-dependent
immune boosting

108

Phase I/IIa trial of autologous
formalin-fixed tumor vaccine
concomitant with fractionated
radiotherapy for newly
diagnosed glioblastoma.
Clinical article

I/IIa 24 (2 excluded
from final analysis)

New Autologous
formalin-fixed

vaccine

PFS, OS, and
survival rate

PFS: 7.6 mo
OS: 19.8 mo 40%

alive at 2 y

109

Phase I/IIa trial of fractionated
radiotherapy, temozolomide,
and autologous formalin-fixed
tumor vaccine for newly
diagnosed glioblastoma

I/IIa 24 New Autologous
formalin-fixed
tumor vaccine

PFS, OS, and
survival
rates

33% with
PFS � 24 mo. PFS:
8.2 moOS: 22.2

mo.47% alive at 2 y,
38% alive at 3 y

110

Adoptive T cell therapy
Autologous T cell therapy for

cytomegalovirus as a
consolidative treatment for
recurrent glioblastoma

I 19 (13 with successfully
expanded

CMV-specific T
cells)

Recurrent CMV-specific T
cells

OS, PFS, and
molecular
profiling

OS: 403 d
[range 133–2,428
d]. PFS: >35 weeks
[range 15.4–254

weeks]. 4 of 10 who
completed T cell
therapy remained
progression free
during study

period.Distinct gene
expression

signatures to CMV-
specific T cell

therapy correlated
with clinical
response.

67

Sample size/type of glioma indicate GBM unless otherwise noted.
Results/outcomes indicate median unless otherwise noted.
Trials were identified on pubmed with the search terms: “glioblastoma” AND “patients” AND “trial,” between the years, 2010 and 2015.
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Table 2. Ongoing trials of immunotherapy for glioma and brain metastases.

Trial Name Phase
Target
accrual Location

New
/Recurrent
/Metastatic

Therapeutic
Modality

Primary and
Secondary
Endpoints

Clinical
Trial

Identifier

DC vaccine
Study of a drug [DCVax®-L] to

treat newly diagnosed GBM
brain cancer

III 300 Multi-center New DCVax®-L
(DC vaccine)

OS, PFS NCT00045968

EGFRvIII vaccine
An International, Randomized,

Double-Blind, Controlled
Study of Rindopepimut/GM-
CSF With Adjuvant
Temozolomide in Patients
With Newly Diagnosed,
Surgically Resected, EGFRvIII-
positive Glioblastoma

III 700 Multi-center New Rindopepimut
/GM-CSF

OS, PFS, safety
and tolerability

NCT01480479

Heat-shock protein (HSP)
vaccine

A Phase II Randomized Trial
Comparing the Efficacy
of Heat Shock Protein-Peptide
Complex-96 (HSPPC-96) (NSC
#725085, ALLIANCE IND #
15380) Vaccine Given With
Bevacizumab vs. Bevacizumab
Alone in the Treatment of
Surgically Resectable
Recurrent Glioblastoma
Multiforme (GBM)

II 222 Northwestern
University

Recurrent HSPPC-96 C
Bevacizumab vs.
Bevacizumab

OS, PFS,
adverse
events

NCT01814813

STAT3 inhibitor
A Phase I Trial of WP1066 in

Patients With Central Nervous
System (CNS) Melanoma and
Recurrent Glioblastoma
Multiforme (GBM)

I 21 M.D. Anderson Recurrent WP1066 maximum
tolerated dose
(MTD), dose-

limiting toxicity
(DLT)

NCT01904123

Immune checkpoint blockade
Phase I Study of Ipilimumab,

Nivolumab, and the
Combination in Patients With
Newly
Diagnosed Glioblastoma

I 42 NRG Oncology (PA) New Ipilimumab and/or
NivolumabC TMZ

immune-related
DLTs, adverse events,

biomarker analysis
of immune cells,
survival rate

NCT02311920

Phase II Study
of Pembrolizumab (MK-3475)
With and Without
Bevacizumab for
Recurrent Glioblastoma

II 79 Dana-Farber Cancer
Institute,

Massachusetts
General Hospital

Recurrent Pembrolizumab
C/¡ Bevacizumab

PFS, MTD, safety,
tolerability, OS,

overall radiographic
response

NCT02337491

Phase 2 Study to Evaluate the
Clinical Efficacy and Safety of
MEDI4736 in Patients With
Glioblastoma (GBM)

II 84 Multi-center New C Recurrent MEDI4736 C/¡
Bevacizumab

OS, PFS, adverse
events, ORR,
pharmokinetic

profile, quality of
life

NCT02336165

A Randomized Phase 3 Open
Label Study of Nivolumab vs.
Bevacizumab and Multiple
Phase 1 Safety Cohorts of
Nivolumab or Nivolumab in
Combination With Ipilimumab
Across Different Lines of
Glioblastoma

III 440 Multi-center Recurrent Nivolumab,
Nivolumab C
Ipilimumab,
Bevacizumab

safety, tolerability,
OS, PFS, ORR

NCT02017717

Adoptive T cells
Pilot Study of Autologous T Cells

Redirected to EGFRVIII-With a
Chimeric Antigen Receptor in
Patients With
EGFRVIIIC Glioblastoma

I 12 University of
Pennsylvania, UCSF

New C Recurrent CAR T cells
to EGFRvIII

number of adverse
events

NCT02209376

Evaluation of Recovery From
Drug-Induced Lymphopenia
Using Cytomegalovirus-
specific T cell Adoptive
Transfer

I 12 Duke University New CMV-autologous
lymphocyte transfer

T cell response,
safety

NCT00693095

Administration of HER2 Chimeric
Antigen Receptor Expressing
CMV-Specific Cytotoxic T Cells
In Patients With Glioblastoma
Multiforme (HERT-GBM)

I 16 Baylor College of
Medicine

Recurrent CMV-specific
Cytotoxic T
Lymphocytes

DLT, safety with
increasing doses,

tumor size

NCT01109095

(Continued)
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treating metastatic melanoma, in which there is an approxi-
mately 2% complete response rate that remains durable.48

Responses have been observed against both non-CNS and
CNS-infiltrated melanoma metastases.49 Preclinically, mice
bearing intracranial glioma and treated with CTLA-4 mAb
(clone 9H10) develop robust antitumor immunity without
affecting Treg function.18 Clinically, the administration of
ipilimumab for GBM has been limited to a small number of
GBM patients in the recurrent setting.

More recently, efforts aimed at inhibiting the PD-1/PD-
L1 pathway have generated significant interest. Tumor-
infiltrating lymphocytes express high levels of PD-1 in
most cancers, including GBM,17 as a result of chronic

antigen stimulation by the tumor.50 When PD-1-express-
ing T cells interact with PD-L1, T cell effector function is
inhibited.50 PD-L1 is upregulated in GBM through the
following mechanisms: (i) oncogenic signaling as a result
of PTEN loss,15 (ii) paracrine signaling,16 and/or (iii)
“adaptive immune resistance” whereby T-cell-secreted
IFNg induces PD-L1 expression on neighboring cells.51

While clinical trials studying PD-1 and PD-L1 blockade
are currently recruiting patients for GBM (NCT02337491,
NCT02336165), the effectiveness of this approach has
been characterized in treating refractory melanoma, pro-
viding an objective response rate (ORR) of approximately
15–30% as monotherapy with complete responses

Table 2. (Continued )

Trial Name Phase
Target
accrual Location

New
/Recurrent
/Metastatic

Therapeutic
Modality

Primary and
Secondary
Endpoints

Clinical
Trial

Identifier

Phase I Study of Cellular
Immunotherapy Using Central
Memory Enriched T Cells
Lentivirally Transduced to
Express an IL13Ra2-Specific,
Hinge-Optimized, 41BB-
Costimulatory Chimeric
Receptor and a Truncated
CD19 for Patients With
Recurrent/Refractory
Malignant Glioma

I 44 City of Hope
Medical Center

RecurrentC
Refractory

Enriched T cells
expressing IL13Ra2

toxicity, DLT,
change in tumor
length, cytokine
levels, PFS, OS,

quality of life, T cell
detection in tumor,
IL13Ra2 antigen
expression level

NCT02208362

A Phase I/II Study of the Safety
and Feasibility of
Administering T Cells
Expressing Anti-EGFRvIII
Chimeric Antigen Receptor to
Patients With Malignant
Gliomas Expressing EGFRvIII

I/II 160 National Institutes
of Health

Recurrent CAR T cells to EGFRvIII safety, PFS, in vivo
survival of CAR cells,

radiographic
changes after
treatment

NCT01454596

Brain metastasis
Ipilimumab Induction in Patients

With Melanoma Brain
Metastases Receiving
Stereotactic Radiosurgery

II 40 University of
Michigan

Metastatic Ipilimumab local control rate,
toxicity rate,

overall survival rate,
intracranial

response rate, time
to event

NCT02097732

A Multi-center, Single Arm, Phase
2 Clinical Study on the
Combination of Radiation
Therapy and Ipilimumab, for
the Treatment of Patients
With Melanoma and Brain
Metastases

II 66. Multi-center Metastatic WBRT 30 Gy in 10
fractions C Ipilimumab

1-y survival rate,
PFS (intracranial
and extracranial),
OS, response rate,
adverse event rate

NCT02115139

A Phase II Study of Nivolumab
and Nivolumab Combined
With Ipilimumab in Patients
With Melanoma Brain
Metastases

II 75 Melanoma
Institute Australia

Metastatic Nivolumab vs.
Nivolumab C Ipilimumab

CR, PR, PFS
(intracranial and

extracranial), overall
response rate, OS,

safety and
tolerability, quality
of life, immune

response, tissue and
blood biomarkers,
FET-PET response

NCT02374242

A Multi-Center Phase 2 Open-
Label Study to Evaluate Safety
and Efficacy in Subjects With
Melanoma Metastatic to
the Brain Treated
With Nivolumab in
Combination With Ipilimumab
Followed
by Nivolumab Monotherapy

II 148 The Angeles &
Clinic Research

Institute,St. Luke’s
Hospital & Health
Network (PA)

Metastatic Nivolumab C Ipilimumab
followed by Nivolumab

CR and PR
(intracranial and
extracranial), OS,
safety, tolerability

NCT02320058

Clinical trials were identified on the website clinicaltrials.gov as of 05/2015.
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restricted to <6 % of patients.52,53 Since PD-1/PD-L1 does
not induce T cell infiltration into tumors, but rather res-
cues/prevents T cell anergy, it is not surprising that
patients associated with the best responses possess higher
tumor-infiltrating T cell levels prior to treatment that is
co-localized with PD-L1 expression.54

The most promising outcomes related to immune check-
point inhibition have been achieved through combinatorial
CTLA-4/PD-(L)1 blockade,55-57 which is consistent with
these pathways providing non-redundant T cell inhibition.
In a recent randomized control trial for untreated advanced
melanoma, dual CTLA-4 and PD-1 blockade provided an
improved ORR (58%) compared to monotherapy CTLA-4
(19%) and monotherapy PD-1 (44%).57 Interestingly, dual
CTLA-4 and PD-1 blockade was found to be superior com-
pared to PD-1 monotherapy in treating PD-L1-negative
tumors, but not PD-L1-positive tumors, suggesting that
CTLA-4 blockade induces T cell infiltration into tumors.57

Consistent with these findings in melanoma, preclinical
models of GBM demonstrate high rates of survival when
treated with simultaneous PD-L1 and CTLA-4 blockade, as
compared to the respective monotherapies.58 Clinically, tri-
als aimed at GBM patient treatment with ipilimumab and
nivolumab (humanized PD-1 mAb) are already underway
(NCT02311920, NCT02017717). In addition, several clinical
trials enrolling patients with brain metastasis are also in
progress, including studies using PD-1 mAb alone and
CTLA-4 combined with PD-1 mAb (NCT02374242,
NCT02320058).

In addition to PD-1 and CTLA-4, therapeutic modula-
tion of other immune inhibitory and stimulatory pathways
is currently being evaluated preclinically and in early-phase
trials (Table S1). Blocking inhibitory receptors LAG-3 or
TIM-3 in combination with PD-1 blockade provides
impressive preclinical tumor control in non-CNS tumor
models 59,60. Dual LAG-3 and PD-1 blockade is currently
being tested against multiple non-CNS solid tumors in a
Phase I trial (NCT01968109). Modulating both inhibitory
and stimulatory immune pathways may also be a promising
approach as dual CTLA-4 blockade and ICOS stimulation
provides improved antitumor control against preclinical
murine melanoma and prostate cancer.61 This strategy may
also be effective in GBM, as triple therapy with RT com-
bined with CTLA-4 inhibition and 41BB stimulation pro-
vides improved tumor control compared to each dual
therapy.62

Adoptive T cell therapy
Previously described therapeutic approaches endeavor to rescue
or induce endogenous T cell responses, while adoptive T cell
therapy provides an alternative strategy that involves expanding
tumor-specific autologous T cells, ex vivo, followed by venous
infusion into the same individual. Tumor-reactive T cells are
isolated from (i) peripheral blood, (ii) surgically resected tissue
or (iii) generated by transduction of the patient’s autologous T
cells with vectors encoding T cell receptors (TCR) or chimeric
antibody receptors (CAR).63 The capacity of adoptive T cell
therapy to eradicate a large established tumor burden has
been demonstrated with the re-infusion of tumor-infiltrating

lymphocytes specific to melanoma,64 as well as CAR-based
treatment for CD19C B-cell malignancies.65

In GBM patients, adoptive T cell therapy has been used to
target human cytomegalovirus (CMV) antigens expressed by
tumor cells.66-68 A recent study treating 11 recurrent GBM
patients with infusions of autologous adoptively transferred
CMV-specific T cells led to a median OS of >57 weeks, with
four patients remaining progression-free throughout the study
period.67 Longer progression-free survival (PFS) was associated
with decreased expression of checkpoint receptors on T cells
suggesting that, maintaining effector function of adoptively
transferred T cells is required for a durable clinical response.67

A clinical trial investigating CMV adoptive T cell therapy is
ongoing (NCT00693095).

Utilizing CAR T cell adoptive therapy for GBM patients is a
logical ‘next step’ for autologous therapy. CAR consist of an
extracellular antibody domain fused to a T cell cytoplasmic sig-
naling domain. Preclinical glioma CAR studies targeting HER2
and the previously described EGFRvIII reported impressive
results.69,70 Clinical trials targeting both antigens are ongoing
(NCT02209376, NCT01109095, NCT01454596), as well as a
CAR trial targeting IL13Ra2 (NCT02208362). Future studies
should focus on identifying additional tumor-specific antigenic
targets shared among patients and/or developing an approach
to personalize CAR technology to each patient’s tumor antigen
profile.

Combination approaches
Optimal immunotherapy approaches must provide immune
activation while, simultaneously, countering inhibitory check-
point blockade signals. Moreover, it is now recognized that sin-
gle modality immunotherapy has limitations that can be
overcome by multi-targeted strategies. Some of the promising
immunotherapeutic combinations will be further discussed.

Radiation, DNA sensors and immune checkpoint blockade

Combining ablative radiation with immune checkpoint block-
ade is a promising immunotherapeutic combination. While
radiation was previously viewed as immunosuppressive, pre-
clinical tumor models have demonstrated that hypofractionated
ablative radiation can generate tumor regression that is T cell
dependent.71 The mechanism accounting for this effect likely
relies on: (i) radiation-induced tumor inflammation and cell
death, (ii) DC that phagocytize “released” cancer cell DNA
capable of activating the Stimulator of IFN genes (STING)
pathway, (iii) increased type 1 IFN-licensed DC that prime
tumor-specific T cells and (iv) reactive T cells that home to and
engage the tumor with strong effector function.72 Type I IFN
appears to be essential for antitumor immunity, with intratu-
moral injection of a STING agonist significantly improving
tumor control following radiation in experimental models.72

While the impact of combined radiation and STING activation
has yet to be confirmed in CNS tumor models, it is notable that
immune-mediated control of glioma outgrowth is dependent
on STING-mediated induction of type 1 IFN.73,74 Accordingly,
glioma patient prognosis is dictated, in part, by type 1 IFN sin-
gle nucleotide polymorphisms (SNPs).75 Collectively, these
findings suggest that immune-modulating approaches utilizing
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a combination of RT and STING agonists may be promising to
combat tumors in the CNS.

For both CNS- and non-CNS-resident tumors, combined
RT and immune checkpoint blockade has demonstrated
increased effectiveness when compared to RT alone. In a
mouse orthotopic glioma model, combining radiation with
anti-PD-1 provides an additive effect that improves OS,
when compared to either therapy administered individu-
ally.76 As a mechanism accounting for the enhanced effec-
tiveness of combinatorial treatment, radiation-induced
inflammation results in PD-L1 upregulation on cancer cells,
macrophages and DC.77 Similarly, combinatorial anti-
CTLA-4 and RT leads to tumor control in a preclinical
model of breast cancer.78 Notably, the latter combination
has thus far yielded a less impressive impact on OS when
compared to combinatorial RT and PD-(L)1 blockade.77

More recently, it was reported that control of preclinical
melanoma is optimal when simultaneously treating with
RT, anti-PD-(L)1 and anti-CTLA-4, when compared to dual
therapy.79 Each modality induced a unique immune activat-
ing profile with RT expanding the TCR repertoire, anti-
CTLA-4 inhibiting Treg function and increasing the Tc/
Treg ratio and anti-PD-(L)1 preventing T cell exhaustion/
dysfunction in tumors.79 Interestingly, RT combined with
anti-CTLA-4 and anti-4-1BB induces similar antitumor
activity, with the latter agonist causing direct stimulation to
cytolytic T cells, resulting in an increased level of survival
and T cell infiltration when compared to dual therapy.62

Clinically, combining RT and checkpoint blockade was
recently tested for the first time in a phase I trial. Patients
received three doses of hypofractionated radiation to a single
metastatic melanoma lesion followed by anti-CTLA-4 treat-
ment. While median OS was <11 mo, local tumor control was
achieved in the irradiated lesions for all 12 patients analyzed.79

Although CNS metastases were not targeted in this trial, local
tumor control of melanoma brain metastases has been reported
in a case series using both whole-brain RT (30 Gy/10 fractions)
and stereotactic RT (20–24 Gy/1 fraction) for patients who
received RT following a course of ipilimumab.80 Based on the
strong promise of radiation combined with checkpoint block-
ade to achieve local tumor control in CNS and non-CNS
tumors, future preclinical and clinical GBM studies should

investigate how to optimize this approach. For melanoma brain
metastases, two phase II trials combining RT approaches with
ipilimumab for brain metastases are currently underway
(NCT02115139, NCT02097732).

Vaccination and immune checkpoint blockade

Therapeutic vaccination may fail if the strategy does not opti-
mally expand tumor-reactive T cells and/or vaccine-generated
T cells lose effector function in the immunosuppressive tumor
microenvironment.81 PD-1/PD-L1 interactions likely dampen
vaccine responses by two mechanisms: (i) in the draining
lymph node where vaccine adjuvant-induced inflammation
results in PD-L1 expression on antigen-presenting cells that
inhibits maximal expansion of vaccine-generated T cells,82 and
in the tumor itself whereby “adaptive immune resistance.” 51 is
generated by T cells secreting IFNg that induces PD-L1 upre-
gulation on neighboring cells leading to T cell anergy. Thus,
combining vaccination with PD-1/PD-L1 antibody blockade is
likely to provide a synergistic effect. In support of this, long-
established preclinical melanomas resistant to dual PD-L1 and
CTLA-4 blockade are eradicated by vaccination in approxi-
mately 33% of mice, but eradicated by vaccination combined
with anti-PD-L1 in 80% of mice.21 In an independent preclini-
cal study of subcutaneous tumors, vaccination combined with
PD-(L)1 and CTLA-4 inhibition led to improved tumor rejec-
tion and mouse survival, when compared to dual- and mono-
therapeutic treatment.83 Clinically, the combination of peptide
vaccination and PD-1 blockade is currently being evaluated in
patients diagnosed with melanoma (NCT01176474). Since the
majority of prior studies have been performed in non-CNS
tumor models, future preclinical and clinical studies should
evaluate these treatment approaches in patients with GBM.

Conclusions

GBM is a highly immunosuppressive tumor that is refractory to
traditional therapies and difficult to treat based on its anatomi-
cal location. Metastatic tumors in the brain, with a prevalence
of >20 :1 compared to GBM, also present much treatment
challenge. Past immunotherapeutic efforts for brain tumors
have predominantly focused on therapeutic vaccination that

Table 3. High priority questions for increasing immunotherapeutic efficacy against tumors in the CNS.

Preclinical

� Do inhibitors that co-target IDO1 and IDO2 provide superior efficacy when compared to monotherapy?
� Will inhibitors of tryptophan catabolism complement other immunotherapies?
� Which capacity of IDO1 is more important for immunotherapeutic efficacy: signal transduction modifier vs. tryptophan catabolism?
� What is the best approach for further identification of ubiquitous GBM-specific neoantigens for translation into vaccine and/or
adoptive T cell therapeutic approaches?

� Is there an optimal vaccination approach to generate functional T cell responses and is this GBM subtype-specific (i.e.
responsiveness in classical vs. mesenchymal, newly diagnosed vs. recurrent)?

� Do different GBM subtypes possess correlative mutational frequencies that associate with responsiveness to immunotherapy?
� Will survival outcomes be enhanced with combinatorial approaches (vaccine§ RT§ checkpoint blockade§ STING activation)?

Clinical

�Will GBM respond to immune checkpoint blockade?
� What is the best approach for identifying patient cohorts that will benefit from immunotherapy?
� What is the best approach for monitoring treatment effectiveness in GBM patients to immunotherapy (i.e. peripheral blood
markers, tryptophan metabolic profiling or IHC markers in the tumor)?

�What is the best approach to limit brain swelling following immunotherapy? Is bevacizumab an alternative to decadron that can be
easily added without defusing effectiveness?
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has achieved promising immune activity and clinical responses.
However, durable responses remain rare highlighting the need
to further test existing promising approaches including gene
therapy (supplemental text, Table S2), develop next-generation
therapeutics (i.e. IDO inhibitors/STING agonists,) and test
novel immunotherapeutic combinations (Table 3). Because
antitumor immune responses occur in the context of inflamma-
tion, the possibility for tumor- and therapy-induced inflamma-
tion to cause additive/synergistic brain swelling and neurologic
compromise must be recognized. While Decadron is routinely
used to counter brain swelling, its use is restricted to low doses
in immunotherapeutic trials as it is also extremely immunosup-
pressive. Next-generation CNS immunotherapies, if more effi-
cacious, may carry an even higher risk for brain swelling and
neurological compromise, thus identifying non-immunosup-
pressive anti-inflammatory approaches is important. Utilizing
bevacizumab, a VEGF neutralizing antibody that secondarily
decreases inflammation, is one such approach currently being
explored in combination with GBM immunotherapy
(NCT02336165, NCT01814813). CNS immunotherapy has a
bright future in this current “golden age” of immunotherapy .
Future studies should focus on providing patients with this bat-
tery of ever-evolving options, while also recognizing that CNS
malignancies have unique immunosuppressive phenotypes that
need to be specifically targeted.
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