Reengineering Somite Segmentation without a Biological Clock
Discovery seen as important for biomedical engineering and developmental biology research involving disruptions to early embryonic development.
One of the most dramatic phases of embryonic development occurs as previously unstructured collections of rapidly dividing precursor cells begin forming the embryo’s spinal column. In animals with spines (including humans), the growing embryo forms soft segments called somites that later develop into vertebral column and associated ribs, skeletal muscles and skin. Thus, somitogenesis establishes the segmental pattern of the vertebrate body axis. A molecular segmentation clock in the precursor cells sets the pace of somite formation. Mutations of the segmentation clock genes lead to birth defects in humans called congenital scoliosis. However, how cells are primed to form a segment boundary at a specific location was unclear. Özbudak lab developed precise reporters for the segmentation clock and double-phosphorylated Erk (ppErk) gradient in zebrafish. They showed that the segmentation clock drives segmental commitment by periodically lowering ppErk, therefore projecting its oscillation onto the ppErk gradient. The team was able to biochemically induce segment formation in zebrafish at will even though the fish had been engineered to lack the clock genes that normally control this process. Thus, they showed that pulsatile inhibition of the ppErk gradient can fully substitute for the role of the clock for sequential somite segmentation. The clock functions upstream of ppErk, which in turn enables neighboring cells to discretely establish somite boundaries in zebrafish. The team’s findings open doors wider to a new wave of basic science research that may someday allow interventions when the clock genes disfunction. One hopeful longer-term application of this study may be that it provides guidance for attempting to grow segmented tissues (like the spine and digits in the hand) in the lab, suggesting a new front for organoid development.
Details were published online in Nature in 2023.
- Simsek MF, Saparov D, Keseroglu K, Zinani O, Chandel AS, Dulal B, Sharma BK, Zimik S, Özbudak EM The vertebrate segmentation clock drives segmentation by stabilizing Dusp phosphatases in zebrafish. Dev Cell 2024 Nov 19;. pii:S1534-5807(24)00668-3
- Chandel AS, Keseroglu K, Özbudak EM Oscillatory control of embryonic development. Development 2024 May 01;151(9). pii:dev202191
- Koparir A, Lekszas C, Keseroglu K, Rose T, Rappl L, Rad A, Maroofian R, Narendran N, Hasanzadeh A, Karimiani EG et al. Zebrafish as a model to investigate a biallelic gain-of-function variant in MSGN1, associated with a novel skeletal dysplasia syndrome. Hum Genomics 2024 Mar 06;18(1):23. pii:23
- McDaniel C, Simsek MF, Chandel AS, Özbudak EM Spatiotemporal control of pattern formation during somitogenesis. Sci Adv 2024 Jan 26;10(4):eadk8937. pii:eadk8937
- Simsek MF, Özbudak EM A design logic for sequential segmentation across organisms. FEBS J 2023 Nov;290(21):5086-5093. doi:10.1111/febs.16899
- Keseroglu K, Zinani OQH, Keskin S, Seawall H, Alpay EE, Özbudak EM Stochastic gene expression and environmental stressors trigger variable somite segmentation phenotypes. Nat Commun 2023 Oct 14;14(1):6497. pii:6497
- Chandel AS, Stocker M, Özbudak EM The Role of Fibroblast Growth Factor Signaling in Somitogenesis. DNA Cell Biol 2023 Oct;42(10):580-584. doi:10.1089/dna.2023.0226
- Keseroglu K, Zinani OQH, Özbudak EM Using single-molecule fluorescence in situ hybridization and immunohistochemistry to count RNA molecules in single cells in zebrafish embryos. STAR Protoc 2023 Mar 17;4(1):102020. pii:102020
- Simsek MF, Özbudak EM Human stem cell models unravel mechanisms of somite segmentation. Cell Stem Cell 2023 Mar 02;30(3):246-247. doi:10.1016/j.stem.2023.01.011
- Simsek MF, Chandel AS, Saparov D, Zinani OQH, Clason N, Özbudak EM Periodic inhibition of Erk activity drives sequential somite segmentation. Nature 2023 Jan;613(7942):153-159. doi:10.1038/s41586-022-05527-x
- Simsek MF, Özbudak EM Patterning principles of morphogen gradients. Open Biol 2022 Oct;12(10):220224. pii:220224
- Zinani OQH, Keseroğlu K, Dey S, Ay A, Singh A, Özbudak EM Gene copy number and negative feedback differentially regulate transcriptional variability of segmentation clock genes. iScience 2022 Jul 15;25(7):104579. pii:104579
- Zinani OQH, Keseroğlu K, Özbudak EM Regulatory mechanisms ensuring coordinated expression of functionally related genes. Trends Genet 2022 Jan;38(1):73-81. doi:10.1016/j.tig.2021.07.008
- Simsek MF, Özbudak EM A 3-D Tail Explant Culture to Study Vertebrate Segmentation in Zebrafish. J Vis Exp 2021 Jun 30;(172). doi:10.3791/61981
- Zinani OQH, Keseroğlu K, Ay A, Özbudak EM Pairing of segmentation clock genes drives robust pattern formation. Nature 2021 Jan;589(7842):431-436. doi:10.1038/s41586-020-03055-0
- Keskin S, Simsek MF, Vu HT, Yang C, Devoto SH, Ay A, Özbudak EM Regulatory Network of the Scoliosis-Associated Genes Establishes Rostrocaudal Patterning of Somites in Zebrafish. iScience 2019 Feb 22;12:247-259. doi:10.1016/j.isci.2019.01.021
- Simsek MF, Özbudak EM Spatial Fold Change of FGF Signaling Encodes Positional Information for Segmental Determination in Zebrafish. Cell Rep 2018 Jul 03;24(1):66-78.e8. doi:10.1016/j.celrep.2018.06.023
- Keskin S, Devakanmalai GS, Kwon SB, Vu HT, Hong Q, Lee YY, Soltani M, Singh A, Ay A, Özbudak EM Noise in the Vertebrate Segmentation Clock Is Boosted by Time Delays but Tamed by Notch Signaling. Cell Rep 2018 May 15;23(7):2175-2185.e4. doi:10.1016/j.celrep.2018.04.069
- Racedo SE, Hasten E, Lin M, Devakanmalai GS, Guo T, Ozbudak EM, Cai CL, Zheng D, Morrow BE Reduced dosage of β-catenin provides significant rescue of cardiac outflow tract anomalies in a Tbx1 conditional null mouse model of 22q11.2 deletion syndrome. PLoS Genet 2017 Mar;13(3):e1006687. pii:e1006687
- Ay A, Holland J, Sperlea A, Devakanmalai GS, Knierer S, Sangervasi S, Stevenson A, Ozbudak EM Spatial gradients of protein-level time delays set the pace of the traveling segmentation clock waves. Development 2014 Nov;141(21):4158-67. doi:10.1242/dev.111930
- Ay A, Knierer S, Sperlea A, Holland J, Özbudak EM Short-lived Her proteins drive robust synchronized oscillations in the zebrafish segmentation clock. Development 2013 Aug;140(15):3244-53. doi:10.1242/dev.093278
- Devakanmalai GS, Zumrut HE, Ozbudak EM Cited3 activates Mef2c to control muscle cell differentiation and survival. Biol Open 2013 May 15;2(5):505-14. doi:10.1242/bio.20132550
- Hanisch A, Holder MV, Choorapoikayil S, Gajewski M, Özbudak EM, Lewis J The elongation rate of RNA polymerase II in zebrafish and its significance in the somite segmentation clock. Development 2013 Jan 15;140(2):444-53. doi:10.1242/dev.077230
- Ozbudak EM, Tassy O, Pourquié O Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation. Proc Natl Acad Sci U S A 2010 Mar 02;107(9):4224-9. doi:10.1073/pnas.0909375107
- Ozbudak EM, Pourquié O The vertebrate segmentation clock: the tip of the iceberg. Curr Opin Genet Dev 2008 Aug;18(4):317-23. doi:10.1016/j.gde.2008.06.007
- Gomez C, Ozbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquié O Control of segment number in vertebrate embryos. Nature 2008 Jul 17;454(7202):335-9. doi:10.1038/nature07020
- Ozbudak EM, Lewis J Notch signalling synchronizes the zebrafish segmentation clock but is not needed to create somite boundaries. PLoS Genet 2008 Feb;4(2):e15. pii:e15
- Giudicelli F, Ozbudak EM, Wright GJ, Lewis J Setting the tempo in development: an investigation of the zebrafish somite clock mechanism. PLoS Biol 2007 Jun;5(6):e150. pii:e150
- Lewis J, Ozbudak EM Deciphering the somite segmentation clock: beyond mutants and morphants. Dev Dyn 2007 Jun;236(6):1410-5
- Mettetal JT, Muzzey D, Pedraza JM, Ozbudak EM, van Oudenaarden A Predicting stochastic gene expression dynamics in single cells. Proc Natl Acad Sci U S A 2006 May 09;103(19):7304-9
- Ozbudak EM, Becskei A, van Oudenaarden A A system of counteracting feedback loops regulates Cdc42p activity during spontaneous cell polarization. Dev Cell 2005 Oct;9(4):565-71
- Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A Multistability in the lactose utilization network of Escherichia coli. Nature 2004 Feb 19;427(6976):737-40
- Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A Regulation of noise in the expression of a single gene. Nat Genet 2002 May;31(1):69-73