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Abstract 

The recent development of imaging and sequencing technologies enables systematic advances in the 

clinical study of lung cancer. Meanwhile, the human mind is limited in effectively handling and fully 

utilizing the accumulation of such enormous amounts of data. Machine learning-based approaches play 

a critical role in integrating and analyzing these large and complex datasets, which have extensively 

characterized lung cancer through the use of different perspectives from these accrued data. In this 

article, we provide an overview of machine learning-based approaches that strengthen the varying 

aspects of lung cancer diagnosis and therapy, including early detection, auxiliary diagnosis, prognosis 

prediction and immunotherapy practice. Moreover, we highlight the challenges and opportunities for 

future applications of machine learning in lung cancer. 
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Introduction 

Lung cancer is one of the most frequently diagnosed cancers and the leading cause of cancer deaths 

worldwide -- about 2.20 million new patients are diagnosed with lung cancer each year [1], and 75% 

of whom die within five years of diagnosis [2]. High intra-tumor heterogeneity (ITH) and complexity 

of cancer cells giving rise to drug resistance make cancer treatment more challenging [3]. Over the 

past decades, the continuous evolution of technologies in cancer research has contributed to many large 

collaborative cancer projects which have generated numerous clinical, medical imaging and 

sequencing databases [4-6]. These databases facilitate researchers in investigating comprehensive 

patterns of lung cancer from diagnosis, treatment and responses, to clinical outcomes [7]. In particular, 

current studies on -omics analysis, such as genomics, transcriptomics, proteomics, and metabolomics, 

have expanded our tools and capabilities for research. Cancer studies are undergoing a shift towards 

the integration of multiple data types and mega sizes. However, using diverse and high-dimensional 

data types for clinical tasks requires significant time and expertise even with assistance from dimension 

reduction methods such as matrix and tensor factorizations [8-11], and analyzing the exponentially 

growing cancer-associated databases poses a major challenge to researchers. Therefore, using machine 

learning (ML) models to automatically learn the internal characteristics of different data types to assist 

physicians’ decision-making has become increasingly important. 

   ML is a subgroup of artificial intelligence (AI) that focuses on making predictions by identifying 

patterns in data using mathematical algorithms [12]. It has served as an assisting tool in cancer 

phenotyping and therapy for decades [13-19], and has been widely implemented in advanced 

approaches for early detection, cancer type classification, signature extraction, tumor 

microenvironment (TME) deconvolution, prognosis prediction, and drug response evaluation [20-27]. 

Herein we present an overview of the main ML algorithms that have been used to integrate complex 

biomedical data (including, e.g., imaging or sequencing data) for different aspects of lung cancer 

(Figure 1, Table S1 and S2), and outline major challenges and opportunities for future applications of 

ML in lung cancer clinical research and practice. We hope that this review promotes a better 

understanding of the roles and potentialities of ML in this field. 

 

Apply ML for early detection and auxiliary diagnosis of lung cancer 



ML on early detection and diagnosis using medical imaging datasets 

Early diagnosis is an important procedure for reducing deaths related to lung cancer. Chest screening 

using low-dose computed tomography (CT) is the primary approach for surveillance of people with 

increased lung cancer risk. To promote diagnostic efficiency, the computer-aided diagnosis (CAD) 

system was developed to assist physicians in the interpretation of medical imaging data [28, 29], which 

has been demonstrated as a useful second opinion for physicians [30]. The original CAD task can be 

broken into two steps: nodule feature extraction and clinical judgment inference (classification). Some 

approaches apply the measured texture features of specified nodules in CT images combined with the 

patient’s clinical variables as input features to train a machine learning classifier, including logistic 

regression (LR) [31-33] or linear discriminant analysis (LDA) [34], for malignancy risk estimation. 

Typically, these measurements include nodule size, nodule type, nodule location, nodule count, nodule 

boundary and emphysema information in CT images, and the clinical variables include the patient’s 

age, gender, specimen collection timing, family history of lung cancer, smoking exposure, and more. 

However, these features are mostly subjective and arbitrarily-defined, and usually fail to achieve a 

complete and quantitative description of malignant nodule appearances. 

   With the development of deep learning algorithms, especially convolutional neural networks 

(CNNs), more studies have been conducted to apply CNN-based models in the CAD system to improve 

its accuracy and reduce its false positive rate and execution time during lung tumor detection [35, 36]. 

The workflow of these models usually consists of three steps: nodule detection and segmentation, 

nodule feature extraction, and clinical judgment inference [37]. Unlike traditional CAD systems, the 

CNN-based CAD system can automatically retrieve and extract intrinsic features of a suspicious 

nodule [38, 39], and can model the 3D shape of a nodule. For example, Ciompi et al. [40] designed a 

model based on OverFeat [41, 42] by extracting three 2D-view-feature vectors (axial, coronal and 

sagittal) of the nodule from CT scans. The recently integrated CNN models facilitate a global and 

comprehensive inspection of nodules for feature characterization from CT images. Buty et al. [43] 

designed a complementary CNN model, where a spherical harmonic model [44] for nodule 

segmentation was used to obtain the shape descriptions (“shape” feature) of the segmented nodule and 

a deep convolutional neural networks (DCNN)-based model [41] to extract the texture and intensity 

features (“appearance” feature) of the nodule. The downstream classification relied on the combination 

of “shape” and “appearance” features. Similarly, Venkadesh et al. [45] used an ensemble model from 



two different models, 2D-ResNet50-based [46] and 3D-inception-V1 [47], to respectively extract two 

features of a pulmonary nodule, and then concatenated the two features as the input features for 

classification. A superiority of the ensemble CNN model is that, it can accurately detect different sizes 

of nodules with strong discriminative power using the raw CT images. Benefiting from the features 

extracted from state-of-the-art CNN models, clinical judgment inference can be implemented through 

frequent ML techniques, including LR, random forest (RF), support vector machine (SVM) and neural-

networks (NNs). Notably, some studies also employed CNN models for final clinical judgment 

inference. Ardila et al. [48] proposed an end-to-end approach to systematically model both localization 

and lung cancer risk categorization tasks using the input CT data alone. Their approach was based on 

a combination of three CNN models: a Mask-RCNN [49] model for lung tissue segmentation, a 

modified RetinaNet [50] model for cancer region of interest (ROI) detection, and a full-volume model 

based on 3D-inflated inception-V1 [51, 52] for malignancy risk prediction. 

   In addition to CT images, CNN-based models are also widely used in histological imaging to help 

with lung cancer diagnosis. Compared with CT imaging, histological imaging can provide more 

biological information about cancer at the cellular level. To this end, AbdulJabbar et al. [53] used the 

Micro-Net [54] model to identify tissue boundaries followed by an SCCNN [55] model to segment 

individual cells from hematoxylin and eosin (H&E)-stained and immunohistochemistry (IHC) images. 

The segmented cells were then applied for cell type classification to evaluate the proportions of each 

cell type in the images. Another study [56] utilized the inception-V3 network [57] to classify whether 

the tissue was lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), or normal from 

H&E-stained histopathology whole-slide images. It is worth noting that this model can also predict 

whether a given tissue has somatic mutations in several lung cancer driver genes, including STK11, 

EGFR, FAT1, SETBP1, KRAS and TP53. 

 

ML on early detection and diagnosis using -omics sequencing datasets 

Although periodic medical imaging tests are recommended for high-risk populations, implementation 

has been complicated by a high false-discovery rate [58, 59]. Therefore, there is a critical need for new 

techniques in early detection of lung cancers. Recent sequencing technologies enable diverse methods 

for early detection of lung cancer [60]. In the meantime, accurately classifying lung cancer subtypes 

is crucial in guiding optimal therapeutic decision-making. LUAD (~45%) and LUSC (~25%) are the 



two most common subtypes of lung cancer but often treated similarly except for targeted therapy [61]. 

However, studies have indicated that LUAD and LUSC have drastically different biological signatures, 

and they have suggested that LUAD and LUSC should be classified and treated as different cancers 

[62, 63]. From a computational perspective, both early detection and subtype identification are part of 

the classification task. Previous ML studies have shown the efficiency and advancement of early 

detection and cancer type classification in large pan-cancer sequencing datasets [64-72], which may 

provide evidence for lung cancer diagnosis. It is known that cancer cells are characterized by many 

genetic variations, and the accumulation of these genetic variations can be signatures that document 

the mutational patterns of different cancer types [3, 5, 73, 74]. For this reason, recent studies have 

concentrated on extracting better genomic signatures as input features to boost the accuracy of their 

ML models. For early detection, blood-based liquid biopsy, including cell-free DNA (cfDNA) 

fragments, circulating tumor DNA (ctDNA), microRNA (miRNA), methylation, exosomes and 

circulating tumor cells (CTCs), to explore potential circulating tumor signatures is considered a 

reliable method [60]. Integrating these liquid biopsy signatures, many discriminative models (SVM, 

RF, LR) have been used to detect tumors with high discovery rates [75-78]. For lung cancer subtype 

classification, somatic mutations, including single-nucleotide variants (SNVs), insertions, and 

deletions, usually have specific cancer type profiles [79]. Thus, studies have leveraged somatic 

mutations as input features to train classifiers for LUAD-LUSC classification [80]. Many of these 

mutations, especially driver mutations, can change expression levels, which impact gene function and 

interrupt cellular signaling processes [79]. As a result, different cancer types show different expression 

levels of certain proteins [81, 82]. Imposed by these unique cancer-type-expression-profiles, ML 

models can leverage RNA sequencing as input data to categorize the malignancy (benign or malignant) 

and subtypes (LUAD or LUSC) of patients [83-86]. Similarly, copy number variation (CNV) is 

reported to be highly correlated with differential gene expression [87], and can be ubiquitously 

detected in cancer cells. As such, CNVs can also be used to train ML models for cancer type 

classification in lung cancer studies [78, 88, 89]. More recently, Jurmeister et al. [90] used DNA 

methylation profiles as input features to determine if the detected malignant nodule is primary lung 

cancer or the metastasis of another cancer. Directly using all generated genes as an input feature may 

result in overfitting [91]. Thus, many studies used different computational approaches to select 

multiple cancer-associated genes to enhance their ML models. Some studies used ML based algorithms 



for feature selection. For example, Liang et al. [77] and Whitney et al. [83] employed the least absolute 

shrinkage and selection operator (LASSO) method to select the optimal markers for model training; 

Aliferis et al. [86] utilized recursive feature elimination (RFE) [92] and univariate association filtering 

(UAF) models to select highly cancer-associated genes. Apart from ML-based models, some studies 

used statistical methods for feature selection. Raman et al. [78] designed a copy number profile 

abnormality (CPA) score to reinforce the CNV feature which is more robust and less subject to variable 

sample quality than directly using CNVs as the input feature. Daemen et al. [89] integrated several 

statistical tests (ordinary fold changes, ordinary t-statistics, SAM-statistics and moderated t-statistics) 

to select a robust differential expression gene set. Aside from these single-measured signatures, some 

studies [78, 83, 85] combined the -omics signatures with clinical signatures to achieve better results. 

Using these tumor-type specific -omics signatures, many algorithms (K-Nearest Neighbors (KNN), 

naive Bayes (NB), SVM, decision tree (DT), LR, RF, LDA, gradient boosting and NN) have 

demonstrated their ability to accurately detect and classify different lung cancer patterns (Table 1). It 

is note that to improve the accuracy of ML models, Kobayashi et al. [80] added an element-wise input 

scaling for the neural network model, which allows the model to maintain its accuracy with a small 

number of learnable parameters for optimization. 

 

 

Apply ML for lung cancer treatment response and survival prediction 

Prognosis and drug response prediction 

Sophisticated ML models have acted as supplements for cancer intervention response evaluation and 

prediction [93, 94], and have demonstrated advances in optimizing therapy decisions that improve 

chances of successful recovery [95, 96]. There are several metrics that are available for evaluating 

cancer therapy response, including the response evaluation criteria in solid tumors (RECIST) [97]. The 

definition of RECIST relies on imaging data, mainly CT and magnetic resonance imaging (MRI), to 

determine how tumors grow or shrink in patients [98]. To track the tumor volume changes from CT 

images, Jiang et al. [99] designed an integrated CNN model. Their CNN model used two deep networks 

based on a full-resolution residual networks [100] model by adding multiple residual streams of 

varying resolutions, so that they could simultaneously combine features at different resolutions for 



segmenting lung tumors. With the RECIST criterion, Qureshi [101] set up a molecular dynamics 

simulation with a machine learning model to predict the RECIST level under EGFR Tyrosine kinase 

inhibitors (TKIs) therapy given the patient’s mutation profile in gene EGFR. In a recent study, the 

authors defined a different metric, tumor proportional scoring (TPS) calculated as the percentage of 

tumor cells in digital pathology images, to evaluate the lung cancer treatment response [102]. They 

applied the Otsu threshold [103] with an auxiliary classifier generative adversarial network (AC-GAN) 

model to identify positive tumor cell regions (TC(+)) and negative tumor cell regions (TC(−)). And 

ultimately used the ratio between the pixel count of the TC(+) regions and the pixel count of all 

detected tumor cell regions to evaluate the TPS number. Another study from Geeleher et al. [104] used 

half-maximal inhibitory concentration (IC50) to evaluate drug response. In their model, the authors 

applied a ridge regression model [105] to estimate IC50 values for different cell lines in terms of their 

whole-genome expression level. 

 

Survival prediction 

Prognosis and survival prediction as a part of clinical oncology is a tough but essential task for 

physicians, as knowing the survival period can inform treatment decisions and benefit patients in 

managing costs [106-108]. For most of medical history, predictions relied primarily on the physician’s 

knowledge and experience based on prior patient histories and medical records. However, studies have 

indicated that physicians tend to execute poorly in predicting the prognosis and survival expectancy, 

often over-predicting survival time [109-111]. Statistical algorithms, such as the Cox proportional-

hazards model [112], have been implemented to assist physicians’ prediction in many studies [113-

116], but they are not particularly accurate [12]. As a comparison, ML has shown its potential to predict 

a patient’s prognosis and survival in genomic, transcriptomic, proteomic, radiomic, and other data sets. 

Chen et al. [117] used 3-year-survival as a threshold to split the patients into high risk (survival time 

<36 months) and low risk (survival time >36 months) groups, and then constructed a neural network 

model to binary predict the risk of a patient using his gene expression data and clinical variables. In 

their model, they tested four microarray gene expression data sets and achieved an overall accuracy of 

83.0% with only five identified survival-time correlated genes. Liu et al. [118] also utilized gene 

expression data for a 3-year-survival classification. Unlike Chen et al. [117], the authors integrated 

three types of sequencing data -- RNA-sequence, DNA methylation and DNA mutation -- to select a 



total of 22 genes to promote their model’s stability. Meanwhile, LUADpp [119] and Cho et al. [120] 

used the somatic mutations as input features to model a 3-year-survival risk classification. To select 

the highest significant mortality-associated-genes, Cho et al. [120] used Chi-squared tests, and 

LUADpp [119] used a published genome-wide rate comparison test [121] that was able to balance 

statistical power and precision to compare gene mutation rates. Due to the complexity of survival 

prediction, multi-omics tumor data have been integrated for analysis in many studies. Compared with 

single-omics data, the multi-omics data is more challenging to accurately extract the most significant 

genes for prediction. To address the issue, several studies [122-125] designed a similar workflow. They 

first constructed a matrix representing the similarity between patients based on their multi-omics data. 

Using the obtained matrix, they then employed an unsupervised clustering model (usually autoencoder 

with K-means clustering) to categorize the patients into two clusters. The two clusters were labeled 

“high-risk” and “low-risk” in terms of the different survival outcomes between the two clusters in the 

Kaplan–Meier analysis. Following the survival outcome differences, the mortality-associated-genes 

were extracted using a statistical model [122, 123] or a ML model [124, 125] for downstream analyses. 

 

Apply ML for lung cancer immunotherapy 

Immunotherapy response prediction 

Immunotherapy has become increasingly important in recent years. It enables a patient’s own immune 

system to fight cancer, in most cases, by stimulating T cells. Up to date, distinct novel immunotherapy 

treatments are being tested for lung cancer, and a variety of them have become standard parts of 

immunotherapy. Immune checkpoint inhibitors (ICIs), especially programmed cell death protein 1 

(PD‐1)/programmed cell death protein ligand 1 (PD‐L1) blockade therapy [126], have demonstrated 

to be valuable in the treatment of patients with non-small cell lung cancer (NSCLC) [127, 128]. 

However, immunotherapy is not yet as widely used as surgery, chemotherapy, or radiation therapies. 

One interpretation is that it doesn’t work for all patients due to the uniqueness of a patient’s tumor 

immune microenvironment (TIME). Therefore, estimating whether a patient will respond to 

immunotherapy is important for cancer treatment. Recently, AI-based technologies have been 

developed to predict immunotherapy responses based on immune genomic signatures and medical 

imaging signatures [129]. To predict the response to PD-1/PD-L1 blockade therapy, Wiesweg et al. 



[130] utilized gene expression profiles of 770 targeted genes as input features to train four classifiers 

(SVM, RF, LR and XGBoost) for RECIST classification. Aside from genomic data, features from CT 

scans can also be used to assess the RECIST level of a patient. Two recent studies [131, 132] used 

radiomic biomarkers as well as other imaging features of tumor lesions from contrast-enhanced 

computed tomography (CE-CT) scans to train a classifier, including LR and RF, for RECIST 

classification. 

 

Tumor-infiltrating lymphocytes (TILs) evaluation 

The proportion of TILs is another important metric for immunotherapy response evaluation. To this 

end, using transcriptomics data, DeepTIL [133] optimized the cell deconvolution model CIBERSORT 

[134] to automatically compute the abundance of the leucocyte subsets (B cells, CD4+ T cells, CD8+ 

T cells, γδ T cells, Mo-Ma-DC cells and granulocytes) within a tumor sample. A different approach 

[135] utilized a total of 84 radiomic features from the CE-CT scans, along with RNA-seq of 20,530 

genes as biomarkers to train a linear elastic-net regression model to predict the abundance of CD8 T-

cells. Another study [136] created a deep learning model to identify TILs in digitized H&E-stained 

images. The methodology consisted of two unique CNN modules to evaluate TILs at different scales: 

a lymphocyte infiltration classification CNN (lymphocyte CNN) and a necrosis segmentation CNN 

(necrosis CNN). The “lymphocyte CNN” aimed to categorize the input image into with- and without- 

lymphocyte infiltration regions. It consists of two steps: a convolutional autoencoder (CAE) [137] for 

feature extraction, followed by a VGG 16-layer network [138] for TIL region classification. The 

“necrosis CNN” aimed to detect TILs within a necrosis region. They used the DeconvNet [139] model 

for TIL segmentation in “necrosis CNN” as the model has been shown to achieve high accuracy with 

several benchmark imaging datasets. 

 

Neoantigen prediction 

In addition to immunotherapy response prediction, ML algorithms have shed light on neoantigen 

prediction for immunotherapy. Neoantigens are tumor-specific mutated peptides generated by somatic 

mutations in tumor cells, which can induce antitumor immune responses [140-142]. Recent work has 

demonstrated that immunogenic neoantigens benefit the development and optimization of neoantigen 

targeted immune therapies [143-146]. In accordance with neoantigen studies in clinical trials, state-of-



the-art ML approaches have been implemented to identify neoantigens based on HLA class I and II 

processing and presentation [147-151]. Using the identified somatic mutations, ML models can 

estimate the binding affinity of the encoded mutated peptides to the patient's HLA alleles (peptide–

HLA binding affinity). The neoantigens can be further predicted based on the estimated peptide–HLA 

binding affinity. NetMHC [152, 153] utilized a receptor-ligand dataset consisting of 528 peptide–HLA 

binding interactions measured by Buus et al. [154] to train a combination of several NNs for neo-

peptide affinity prediction. To make the prediction more accurate, NetMHC-pan [155, 156] used a 

larger data set consisting of 37,384 unique peptide-HLA interactions covering 24 HLA-A alleles and 

18 HLA-B alleles (26503 and 10881 for the A and B alleles, respectively) to train their NN model. 

Both tools have been implemented to study the neoantigen landscape in lung cancers [140, 157-159]. 

 

Challenges and future perspectives 

This review depicts the applications of ML algorithms in lung cancer early detection, diagnosis 

decision, prognosis prediction, drug response evaluation, and immunotherapy practice (Table S1 and 

S2). Despite the widespread use of ML studies in lung cancer clinical practice and research, there are 

still challenges to be addressed. Here, we post four major challenges and perspectives for future studies. 

 

Imaging data analysis 

Learning how to effectively extract nuance from imaging data is critical for clinical use. In the earlier 

ML-based CAD system, feature extractions were typically based on the image intensity, shape, and 

texture of a suspicious region along with other clinical variables [160]. However, these approaches are 

arbitrarily-defined and may not retrieve the intrinsic features of a suspicious nodule. To this end, a 

CNN-based CAD system was developed leveraging CNN models to extract features directly from raw 

imaging data with multilevel representations and hierarchical abstraction [161-163]. Contrary to 

previous methods, features from a CNN model are not designed by humans, and reflect the intrinsic 

features of the nodule in an objective and comprehensive manner. Recently, the Vision Transformer 

(ViT) has emerged as the current state-of-the-art in computer vision [164, 165]. In comparison to CNN, 

ViT outperformed almost ×4 in terms of computational efficiency and accuracy, and was more robust 

when training on smaller datasets [166]. Although, to our knowledge, ViT models haven’t been 



implemented in any lung cancer imaging studies, they have shown their potential as a competitive 

alternative to CNN in imaging data analysis. 

 

Multi-omics data integration and analysis 

Though the ITH in cancer causing drug resistance challenges our ability to characterize tumors [167], 

multi-omics data provides a comprehensive insight into the molecular functions of lung cancer studies. 

However, large multi-omics data sets, especially the recent development of single-cell-based [168] and 

spatial-based [169] technologies, leading to computationally intensive analysis is a major challenge 

[170]. Multi-omics analysis can be broken down into three steps: processing, integration and analysis. 

Most datasets are sequenced from different platforms, thus sequencing bias and background noise 

inevitably exist within these platforms, making the first and second steps difficult to address perfectly. 

Removing batch effects and putting datasets from multiple platforms together in a framework that 

allows us to further analyze the mechanisms of cancer drug resistance and recurrence is important for 

cancer therapies. Though biomedical studies have experimented and/or benchmarked integrative tools 

[170-173], they are not comprehensive and discriminating enough to address the choice of tools in the 

context of biological questions of interest. 

 

Immunotherapy 

ML has shown its capacity for personalized immunotherapy approaches and provides guidance on the 

combination of immunotherapy with other treatments for lung cancer patients. However, unlike 

chemotherapy or surgery that have abundant clinical trials, the clinical trials of immunotherapy are 

limited, and the available patients for a trial are usually insufficient for some ML models requiring 

large amounts of training data [129, 174]. Therefore, integrating data sets from different clinical trials 

and reducing overfitting in small samples is necessary to reinforce a model’s performance in 

immunotherapy practices. Despite these improvements, most patients fail ICI therapy due to drug 

resistance or non-responsive [175]. Thus, identifying neoantigens is valuable for immunotherapy 

studies. Although ML models have been proposed to predict HLA binding, a limited number of 

neoantigens have been approved for clinical trials. Further study of neoantigen prediction requires both 

efforts in ML model design and clinical practice. 



 

Clinical decision making 

A recent study estimated that the overall costs for lung cancer therapy would exceed $50,000 [176] for 

most patients, and that the cost would be high for most families. Thus, using ML in predicting the 

effectiveness of a therapy and optimizing the combination of different therapies will pave the way for 

personalized treatment. However, most existing ML models for clinical decision making have 

difficulty in keeping up with knowledge evolution and/or dynamic health care data change [177]. 

Currently, clinical decision-support systems, including IBM Watson Health and Google DeepMind 

Health, have been implemented in lung cancer treatments in recent years [178, 179]. Although the 

efficiency of clinical work has improved with the help of these systems, they are still far from perfect 

in terms of clinical trials, and currently cannot replace physicians at this stage [179]. We still have a 

long way to go before we realize the full potential of ML clinical decision making tools. 
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Figures  

Figure 1 Applications of machine learning model in lung cancer  

Abbreviations: CT: computed tomography; MALDI: matrix-assisted laser desorption/ionization; CNN: 

convolutional neural network; cfDNA: cell free DNA; CAD: computer-aided diagnosis; CNV: copy 

number variation; RECIST: response evaluation criteria in solid tumors; TIL: tumor-infiltrating 

lymphocytes 

 



 

Tables 

Table 1 Publications relevant to ML on early detection and diagnosis using sequencing. 

Name ML methods 
NO. of 

samples 

Sequencing 

data type 
Performance 

Validation 

method 

Feature 

selection 

Mathios et al. 

[75] 

LR model with 

a LASSO 

penalty 

799 cfDNA 

fragment 

AUC = 0.98 10-fold 

cross-

validation 

cfDNA fragment 

feature 

Lung-CLiP 

[76] 

5-nearest 

neighbor; 3-

nearest 

neighbor; NB; 

LR; DT 

160 cfDNA AUC from 

0.69 to 0.98 

Leave-

one-out 

cross 

validation 

SNV + CNV 

features 

Liang et al. 

[77] 

LR 296 ctDNA AUC = 0.816 10-fold 

cross-

validation 

Nine DNA 

methylation 

markers 

Kobayashi et 

al. [80] 

Diet Networks 

with EIS 

954 somatic 

mutation 

Accuracy = 

0.8 

5-fold 

cross-

validation 

SNVs, insertions, 

and deletions 

across 17,961 

unique gene 

symbols  

Whitney et al. 

[83] 

LR 299 RNA-seq of 

BECs 

AUC = 0.81 10-fold 

cross-

validation 

RNA of clinical 

covariates 

(gender, tobacco 

use, and smoking 

history) 

associated genes 

+ RNA of lung 

cancer-associated 

genes 

Podolsky et 

al. [84] 

KNN; NB 

normal 

distribution of 

attributes; NB 

distribution 

through 

histograms; 

SVM; C4.5 DT 

529 RNA-seq AUC = 0.91 Hold-out RNA-seq 

Choi et al. 

[85] 

An ensemble 

model based on 

elastic net LR, 

SVM, 

hierarchical LR 

2,285 RNA-seq of 

bronchial 

brushing 

sample 

AUC = 0.74 5-fold 

cross-

validation 

RNA-seq of 

1,232 genes and 

four clinical 

covariates (age, 

pack-years, 



inhaled 

medication use, 

specimen 

collection 

timing) 

Aliferis et al. 

[86] 

linear SVM; 

polynomial-

kernel SVM; 

KNN; NN 

203 RNA-seq AUC from 

0.8783 to 

0.9980 

5-fold 

cross-

validation 

RNA-seq of 

selected genes 

using RFE and 

UAF 

Aliferis et al. 

[88] 

DT; KNN; 

linear SVM; 

polynomial-

kernel SVM; 

RBF-kernel 

SVM; NN 

37 Gene copy 

number 

measure by 

array CGH 

Accuracy = 

0.892 

Leave-

one-out 

cross 

validation 

Gene copy 

number of 80 

best genes 

according to 

weights in linear 

SVM trained 

with all genes 

Raman et al. 

[78] 

RF; SVM; LR 

with ridge, 

elastic net; 

LASSO 

regularization 

843 cfDNA mAUC from 

0.896 to 

0.936 

Leave-

one-out 

cross-

validation 

Copy number 

profiling of 

cfDNA 

Daemen et al. 

[89] 

LS-SVM 89 CNV 

measured 

by CGH 

Accuracy 

from 0.880 to 

0.955 

10-fold 

cross-

validation 

CNV measured 

by CGH 

Jurmeister et 

al. [90] 

NN, SVM, RF 972 DNA 

methylation 

Accuracy 

from 0.878 to 

0.964 

5-fold 

cross-

validation 

Top 2000 

variable CpG 

sites 

Note: Abbreviations: ctDNA: circulating tumor DNA; cfDNA: cell-free DNA; LR: logistic regression; 

AUC: area under the curve; mAUC: Mean area under the curve; EIS: element-wise input scaling; NB: 

naive Bayes; DT: decision tree; CNV: copy number variation; SNV: single-nucleotide variant; SVM: 

support vector machines; BEC: bronchial epithelial cell; CGH: Comparative Genomic Hybridization; 

LS-SVM: weighted least squares support vector machines; RF: random forest; RFE: recursive feature 

elimination; UAF: univariate association filtering; NN: neural network. 

 

  



Supplementary material 

Table S1 Lung cancer benchmark datasets used by the machine learning methods reviewed in 

this paper 

NO. Database Data type Website 

1 TCGA [5] Genomics data https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga 

2 TCIA [6] Image (CT, MRI, PET, etc.) https://www.cancerimagingarchive.net/ 

3 PanCan [180] CT https://www.thelancet.com/journals/lanonc/article/PIIS1470-2045(17)30597-1/fulltext 

4 BCCA [181] CT https://www.atsjournals.org/doi/full/10.1164/rccm.200301-144OC 

5 DLCST [182] CT https://www.sciencedirect.com/science/article/pii/S1556086415316786 

6 Kriegsmann et al. [34] MALDI https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054336/ 

7 LIDC-IDRI [183] CT https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI 

8 LTRC CT https://ltrcpublic.com/ 

9 NLST CT https://www.cancer.gov/types/lung/research/nlst 

10 NELSON [184] CT https://acsjournals.onlinelibrary.wiley.com/doi/10.1002/cncr.23590 

11 Venkadesh et al. [45] CT https://pubs.rsna.org/doi/full/10.1148/radiol.2021204433 

12 Jiang et al. [99] CT https://ieeexplore.ieee.org/document/8417454 

13 TRACERx [185] Histological image https://www.nejm.org/doi/10.1056/NEJMoa1616288?url_ver=Z39.88-

2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%20%200www.ncbi.nlm.nih.gov 

14 TCGA – LUSC [186] Histological image; 

Genomics 

https://www.nature.com/articles/nature11404 

15 TCGA – LUAD [187] Histological image; 

Genomics 

https://www.nature.com/articles/nature13385 

16 Pan-Lung Cancer dataset 

[188] 

Exome sequences and copy 

number profiles 

https://www.nature.com/articles/ng.3564#Sec20 

17 AEGIS [189] RNA https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4115 

18 Bhattacharjee et al. [190] RNA https://www.pnas.org/content/98/24/13790.long 

19 Beer et al. [191] RNA https://www.nature.com/articles/nm733#Sec3 

20 Wigle et al. [192] RNA https://cancerres.aacrjournals.org/content/62/11/3005.long 

21 Gordon et al. [193] RNA https://cancerres.aacrjournals.org/content/62/17/4963.long 



22 Silvestri et al. [194] RNA https://www.nejm.org/doi/full/10.1056/NEJMoa1504601 

23 Aliferis et al. [88] Array CGH https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2244172/pdf/procamiasymp00001-0048.pdf 

24 Raman et al. [78] Cell-free DNA https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-020-00735-4#Sec2 

25 CLCGP project [195] Genomics data https://www.science.org/doi/10.1126/scitranslmed.3006802 

26 Daemen et al. [89] Array CGH http://psb.stanford.edu/psb-online/proceedings/psb09/daemen.pdf 

27 NCI caArray database [196] RNA https://wiki.nci.nih.gov/display/caArray2/caArray+Retirement+Announcement 

28 Wang et al. [197] Somatic mutation in EGFR https://www.nature.com/articles/srep02855#Sec9 

29 Lee et al. [198] Genomic DNA in EGFR https://www.sciencedirect.com/science/article/pii/S1556086415334705?via%3Dihub#bib18 

30 EGFR Mutation Database 

[199] 

Somatic mutation in EGFR http://www.cityofhope.org/cmdl/egfr_db 

31 Zou et al. [200] Somatic mutation in EGFR https://www.nature.com/articles/s41598-017-06632-y#Sec11 

32 Garnett et al. [201] RNA https://www.nature.com/articles/nature11005#ethics 

33 Wiesweg et al. [130] RNA https://www.sciencedirect.com/science/article/pii/S0959804920305219?via%3Dihub 

34 Trebeschi et al. [131] CT https://www.sciencedirect.com/science/article/pii/S0923753419312025?via%3Dihub 

35 Coroller et al. [132] CT https://www.sciencedirect.com/science/article/pii/S0167814016310386?via%3Dihub 

36 GEO RNA https://www.ncbi.nlm.nih.gov/gds 

37 MOSCATO database [202] CT, RNA https://cancerdiscovery.aacrjournals.org/content/7/6/586.long#sec-8 

38 Champiat et al. [203] CT https://clincancerres.aacrjournals.org/content/23/8/1920.long#sec-6 

39 Sun et al. [204] CT https://www.sciencedirect.com/science/article/pii/S095980491731153X 

40 Buus et al. [154] Tumor peptidomics dataset https://www.sciencedirect.com/science/article/pii/030441659400172T?via%3Dihub 

41 Peters et al. [205] Tumor peptidomics dataset https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.0020065 

42 Bulik-Sullivan et al. [151] Tumor peptidomics dataset https://massive.ucsd.edu/ProteoSAFe/dataset.jsp?task=ad676ada8227478e92996c2ef849ea31 

43 Mathios et al. [75] cfDNA https://ega-archive.org/studies/EGAS00001005340 

44 Chabon et al. [76] cfDNA https://clip.stanford.edu/ 

45 Liang et al. [77] DNA methylation https://www.thno.org/v09p2056.htm 

46 Jurmeister et al. [90] DNA methylation https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE124052 

Note: Abbreviations: TCGA: The Cancer Genome Atlas; TCIA: The Cancer Imaging Archive; PanCan: Pan-Canadian Early Detection of Lung Cancer 

Study; BCCA: British Columbia Cancer Agency study; DLCST: The Danish Lung Cancer Screening Trial; LIDC-IDRI: Lung Image Database 

Consortium image collection; MALDI: ML-based CAD Matrix-assisted laser desorption/ionization; LTRC: Lung Tissue Research Consortium; NLST: 

National Lung Screening Trial; NELSON: Dutch-Belgian randomized lung cancer screening trial; MOSCATO: The Molecular Screening for Cancer 

Treatment Optimization: CGH: comparative genomic hybridization; cfDNA: cell-free DNA. 



 

Table S2 Machine learning methods used for benchmark studies in lung cancer therapy 

Name Application scenarios Datasets in Table S1 Benchmarks 

McWilliams et al. [31] ML on early detection and diagnosis 

using medical imaging datasets 

3, 4 No 

Riel et al. [32] ML on early detection and diagnosis 

using medical imaging datasets 

5 Radiologists 

Wille et al. [33] ML on early detection and diagnosis 

using medical imaging datasets 

3, 4, 5 No 

Kriegsmann et al. [34] ML on early detection and diagnosis 

using medical imaging datasets 

6 No 

Hussein et al. [38] ML on early detection and diagnosis 

using medical imaging datasets 

7 GIST features [206] with LASSO; 3D CNN (Karpathy 

et al. [207]) multi-task learning with trace norm 

Khosravan et al. [39] ML on early detection and diagnosis 

using medical imaging datasets 

8 Khosravan et al. [208]; Dou et al. [209]; Radiologists 

Ardila et al. [48] ML on early detection and diagnosis 

using medical imaging datasets 

7, 9 No 

Ciompi et al. [40] ML on early detection and diagnosis 

using medical imaging datasets 

10 RF; SVM; Radiologists 

Buty et al. [43] ML on early detection and diagnosis 

using medical imaging datasets 

7 No 

Venkadesh et al. [45] ML on early detection and diagnosis 

using medical imaging datasets 

11 Radiologists; PanCan model [180] 

AbdulJabbar et al. [53] ML on early detection and diagnosis 

using medical imaging datasets 

13 No 

Coudray et al. [56] ML on early detection and diagnosis 

using medical imaging datasets 

14, 15 No 

Mathios et al. [75] ML on early detection and diagnosis 

using -omics sequencing datasets 

1, 43 No 



Lung-CLiP [76] ML on early detection and diagnosis 

using -omics sequencing datasets 

44 5-nearest neighbor; 3-nearest neighbor; NB; LR; DT 

Liang et al. [77] ML on early detection and diagnosis 

using -omics sequencing datasets 

45 No 

Kobayashi et al. [80] ML on early detection and diagnosis 

using -omics sequencing datasets 

16 MLP; Diet Networks [210] 

Whitney et al. [83] ML on early detection and diagnosis 

using -omics sequencing datasets 

17 No 

Podolsky et al. [84] ML on early detection and diagnosis 

using -omics sequencing datasets 

18, 19, 20,21 KNN; NB; SVM; DT 

Choi et al. [85] ML on early detection and diagnosis 

using -omics sequencing datasets 

22 RF; SVM; LDA; GB; penalized LR 

Aliferis et al. [86] ML on early detection and diagnosis 

using -omics sequencing datasets 

18 linear SVM; polynomial-kernel SVM; KNN; NN 

Aliferis et al. [88] ML on early detection and diagnosis 

using -omics sequencing datasets 

23 DT; KNN; linear SVM; polynomial-kernel SVM; RBF-

kernel SVM; NN 

Raman et al. [78] ML on early detection and diagnosis 

using -omics sequencing datasets 

24, 25 RF; SVM; LR with ridge; Elastic Net [211]; Lasso 

regularization [212] 

Daemen et al. [89] ML on early detection and diagnosis 

using -omics sequencing datasets 

26 No 

Jurmeister et al. [90] ML on early detection and diagnosis 

using -omics sequencing datasets 

46 NN, SVM, RF 

Chen et al. [117] Survival prediction 27 No 

LUADpp [119] Survival prediction 1 No 

Cho et al. [120] Survival prediction 1 NB; KNN; SVM; DT 

Yu et al. [122] Survival prediction 1 No 

CIMLR [123] Survival prediction 1 iCluster+ [213]; Bayesian consensus clustering [214]; 

PINS [215]; SNF [216] 

Takahashi et al. [125] Survival prediction 1 No 



Asada et al. [124] Survival prediction 1 SVM; KNN; RF; LR 

Qureshi [101] Prognosis and drug response 

prediction 

28, 29, 30, 31 Wang et al. [197]; Ma et al. [217]; Duan et al. [218]; 

Zou et al. [219]; Kureshi et al. [220] 

Kapil et al. [102] Prognosis and drug response 

prediction 

Not publicly available No 

Jiang et al. [99] Prognosis and drug response 

prediction 

2, 7, 12 FRRN [100]; Unet [221]; SegNet [222]; RF+fCRF 

[223] 

Geeleher et al. [104] Prognosis and drug response 

prediction 

32 RF; PAM [224]; Principal component regression [225]; 

Lasso regression [212]; Elastic Net regression [211] 

Liu et al. [118] Prognosis and drug response 

prediction 

1, 36 SVM; RF; LR: NB; linear regression; SVR (kernel 

Poly); SVR (kernel Linear); ridge regression 

Wiesweg et al. [130] Immunotherapy response prediction 33 No 

Trebeschi et al. [131]  Immunotherapy response prediction 34 No 

Coroller et al. [132] Immunotherapy response prediction 35 No 

DeepTIL [133] Tumor-infiltrating lymphocytes 

(TILs) evaluation 

36 CIBERSORT [134] 

Sun et al. [135] Tumor-infiltrating lymphocytes 

(TILs) evaluation 

1, 2, 37, 38, 39 No 

Saltz et al. [136] Tumor-infiltrating lymphocytes 

(TILs) evaluation 

1 Zhao et al. [226] 

NetMHC [152] Neoantigen prediction 40 No 

NetMHC-pan [156] Neoantigen prediction 41 NetMHC [152] 

Bulik-Sullivan et al. 

[151] 

Neoantigen prediction 42 NetMHC [152]; MHCflurry [227]; NetMHCpan [156] 

Note: Abbreviations: CNN: convolutional neural network; KNN: k-nearest neighbors; NB: naive Bayes; RF: random forests; SVM: support vector 

machine; SVR: support vector regression; LR: logistic regression; DT: decision tree; NN: neural network; LDA: linear discriminant analysis; GB: gradient 

boosting; MLP: multilayer perceptron; RF+fCRF: Random forest with fully connected conditional random field 
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