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BACKGROUND Genome-wide association studies and candidate gene association studies have identified more than

180 genetic variants statistically associated with anthracycline-induced cardiotoxicity (AIC). However, the lack of

functional validation has hindered the clinical translation of these findings.

OBJECTIVES The aim of this study was to functionally validate all genes associated with AIC using human induced

pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs).

METHODS Through a systemic literature search, 80 genes containing variants significantly associated with AIC were

identified. Additionally, 3 more genes with potential roles in AIC (GSTM1, CBR1, and ERBB2) were included. Of these,

38 genes exhibited expression in human fetal heart, adult heart, and hiPSC-CMs. Using clustered regularly interspaced

short palindromic repeats/Cas9–based genome editing, each of these 38 genes was systematically knocked out in control

hiPSC-CMs, and the resulting doxorubicin-induced cardiotoxicity (DIC) phenotype was assessed using hiPSC-CMs.

Subsequently, functional assays were conducted for each gene knockout on the basis of hypothesized mechanistic

implications in DIC.

RESULTS Knockout of 26 genes increased the susceptibility of hiPSC-CMs to DIC. Notable genes included efflux

transporters (ABCC10, ABCC2, ABCB4, ABCC5, and ABCC9), well-established DIC-associated genes (CBR1, CBR3, and

RAC2), and genome-wide association study–discovered genes (RARG and CELF4). Conversely, knockout of ATP2B1,

HNMT, POR, CYBA,WDR4, and COL1A2 had no significant effect on the in vitro DIC phenotype of hiPSC-CMs. Furthermore,

knockout of the uptake transporters (SLC28A3, SLC22A17, and SLC28A1) demonstrated a protective effect against DIC.

CONCLUSIONS The present findings establish a comprehensive platform for the functional validation of DIC-associated

genes, providing insights for future studies in DIC variant associations and potential mechanistic targets for the develop-

ment of cardioprotective drugs. (J Am Coll Cardiol CardioOnc 2024;6:38–50) © 2024 The Authors. Published by Elsevier

on behalf of the American College of Cardiology Foundation. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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AB BR E V I A T I O N S

AND ACRONYM S

ABC = adenosine

triphosphate–binding cassette

AIC = anthracycline-induced

cardiotoxicity

CRISPR = clustered regularly

interspaced short palindromic

repeats

DIC = doxorubicin-induced

cardiotoxicity

GWAS = genome-wide

association study/studies

hiPSC-CM = human induced

pluripotent stem cell–derived

cardiomyocyte

IC50 = half maximal inhibitory

concentration

KO = knockout

LD50 = median lethal dose

ROS = reactive oxygen species

SLC = solute carrier

SNP = single-nucleotide

polymorphism
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A nthracyclines, primarily doxorubicin, consti-
tute a key component in about 60% of cancer
treatment regimens,1 with approximately

35% administered to patients with breast cancer.
Despite their efficacy, doxorubicin-induced cardio-
toxicity (DIC) occurs in a dose-dependent manner in
about 9% of patients, and 98% of these cases emerge
within the first year of treatment.2 DIC encompasses 4
major interrelated molecular mechanisms: 1) genera-
tion of reactive oxygen species (ROS); 2) mitochon-
drial dysfunction; 3) DNA damage involving TOP2B;
and 4) calcium overload leading to sarcomere dam-
age. These mechanisms collectively lead to cardio-
myocyte death, clinically determined by troponin
detection in peripheral blood and reduced left ven-
tricular ejection fraction.

To date, 5 genome-wide association studies
(GWAS)3-7 and 20 candidate gene association studies8

have identified 80 genes with single-nucleotide
polymorphisms (SNPs) significantly linked to
anthracycline-induced cardiotoxicity (AIC).8 Despite
this, only 1 AIC-associated variant locus (in SLC28A3)
has been independently replicated.9,10 Thus, the
functional validation of AIC-associated variants re-
mains a critical prerequisite before incorporating this
information into clinical practice.

The AIC-associated genes can be categorized into
6 major groups on the basis of their hypothesized
mechanistic function. 1) Genes associated with ROS
production and handling: doxorubicin induces ROS
generation predominantly by reduction in the mito-
chondria, producing semiquinone-producing super-
oxide (O2

þ) free radicals. 2) Genes related to DNA
damage: doxorubicin inflicts DNA damage on car-
diomyocytes either by direct intercalation with DNA
or by disruption of DNA repair after cleavage by
TOP2B. 3) Genes associated with iron uptake: doxo-
rubicin, with a high affinity for iron, can alter iron
metabolism through interactions with iron regulatory
proteins, stabilizing transferrin transcripts and
inhibiting the expression of iron-sequestering pro-
teins.11 4) Genes associated with transporters con-
trolling doxorubicin uptake and efflux: generally,
variants in uptake transporters (ie, members of
the solute carrier [SLC] family) are protective against
AIC by reducing doxorubicin transport into
cardiomyocytes.9,10,12,13 Conversely, variants in
efflux transporters (adenosine triphosphate–binding
cassette [ABC]) are linked to increased intracellular
doxorubicin concentration and AIC.14 5) Genes
involved in calcium handling: doxorubicin directly
binds to ryanodine receptors, inducing calcium
release from sarcoplasmic reticulum.15 It also en-
hances L-type calcium channel activity,16 leading to
an increased level of intracellular calcium. 6)
Genes related to altered electric currents in
the cardiomyocytes: after doxorubicin treat-
ment, this can result in impaired contractile
function.17

Previously, we demonstrated that human
induced pluripotent stem cell–derived car-
diomyocytes (hiPSC-CMs) accurately recapit-
ulate patient-specific cardiotoxic responses
to doxorubicin.13,18,19 In the present study,
we functionally validate the role of 38 genes
associated with anthracycline cardiotoxicity
in patients with cancer using clustered regu-
larly interspaced short palindromic repeats
(CRISPR)/Cas9–based knockout (KO) in
hiPSC-CMs, followed by an array of in vitro
characterization assays. Our work confirms
that 31 genes, identified in GWAS and candi-
date gene association studies, play mecha-
nistic roles in DIC at the cellular level. This
approach provides insights into the impact of
each gene KO on DIC development and their
potential mechanistic pathways.
METHODS

VARIANT AND GENE CANDIDATE IDENTIFICATION.

Following a comprehensive PubMed search involving
both original and review papers investigating genetic
risk factors associated with DIC, we compiled a list of
potential candidates. These candidates underwent
testing for their expression levels in hiPSC-CMs,
adult human heart, and fetal human heart19

(Supplemental Table 1).

HUMAN INDUCED PLURIPOTENT STEM CELL CULTURE,

CRISPR/Cas9-MEDIATED KO GENERATION, AND

DIFFERENTIATION TO CARDIOMYOCYTES. For detailed
information, refer to the Supplemental Methods. We
used a control male hiPSC line with an exogenous
TNNT2 promoter–driven phleomycin D1 resistance
cassette for cardiomyocyte purification, as previ-
ously described.13 All protocols received approval
from the Northwestern University Institutional Re-
view Board. Pairs of CRISPR/Cas9 guide RNAs were
designed with a separation of >50 bp to induce a
large deletion within the earliest common exon of
each gene. Supplemental Tables 2 to 4 display all
used primers for single guide RNA expression vector
generation, a list of potential off-targets, and
sequencing primers. We selected 1 KO hiPSC line
with the lowest expression of each gene, which was
then differentiated into cardiomyocytes and
assessed on day 30.

https://doi.org/10.1016/j.jaccao.2023.11.008
https://doi.org/10.1016/j.jaccao.2023.11.008
https://doi.org/10.1016/j.jaccao.2023.11.008


FIGURE 1 Prioritization of Doxorubicin-Induced Cardiotoxicity–Associated Loci

Table showing the 38 doxorubicin-induced cardiotoxicity–associated loci ranked on the basis of the single-nucleotide polymorphism (SNP) with highest P value from

their respective publications.23-30 The heat map of cardiac tissue expression shows the expression of anthracycline-induced cardiotoxicity–associated genes in adult

human heart (n ¼ 2), in fetal human heart (n ¼ 2), and in human induced pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) (n ¼ 7) by RNA sequencing.

n ¼ number of distinct patient-specific samples.
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STATISTICAL METHODS. Data are expressed as mean
� SEM. Comparisons were conducted using 1- or
2-way analysis of variance or unpaired 2-tailed Stu-
dent’s t-tests, with significant differences defined as
P < 0.05, P < 0.01, P < 0.001, and P < 0.0001.

For more detailed methods, refer to the
Supplemental Appendix.

RESULTS

DIC-ASSOCIATED GENE PRIORITIZATION, KO GENERATION,

AND IN VITRO DOXORUBICIN TOXICITY MEASUREMENT.

We compiled a table of 429 SNPs associated with DIC,
with 180 being unique (Supplemental Table 1). From
this meta-analysis, we identified 80 SNP-harboring
genes significantly linked to AIC. Our bioinformatic
analysis did not predict any gain of function resulting
from these SNPs. Additionally, we included 3 other
potential candidates: GSTM1, associated with DIC
through deletion rather than a SNP;20 CBR1, consid-
ered one of the prototypical DIC-associated genes;21

and ERBB2, implicated in the cardiotoxicity of tras-
tuzumab plus doxorubicin regimens.22 We assessed
the expression of 83 genes using RNA sequencing in
the fetal heart, adult human heart, and hiPSC-CMs.
Subsequently, 38 genes consistently expressed (>10
transcripts per million for hiPSC-CMs) were chosen
for KO generation (Figure 1, Supplemental Table 1).

https://doi.org/10.1016/j.jaccao.2023.11.008
https://doi.org/10.1016/j.jaccao.2023.11.008
https://doi.org/10.1016/j.jaccao.2023.11.008


FIGURE 2 Validation of KOs of 36 Genes Significantly Associated With Doxorubicin-Induced Cardiotoxicity

(A) Validation of successful clustered regularly interspaced short palindromic repeats/Cas9–based gene knockout (KO) in human induced

pluripotent stem cell–derived cardiomyocytes (hiPSC-CMs) using quantitative reverse transcriptase polymerase chain reaction. The data

presented here are the relative expression of each studied gene in its own KO lines relative to isogenic control (ISO). (B) Effect of gene KOs on

hiPSC-CM viability after doxorubicin treatments (72 hours). Each data point represents 1 median lethal dose (LD50) calculation on the basis of

an individual experimental replicate derived from a 5-log doxorubicin dosing. Central bar represents mean. Error bars represent �SEM.

P values (*P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001) are derived from differences between gene KO and ISO (Mann-Whitney

U test). Raw dose-response curves from which these LD50 values are derived are provided in Supplemental Figures 4 to 6.
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We generated KO hiPSC-CM lines for each of the 38
genes, with all guide RNA sequences listed in
Supplemental Table 2. All KOs were validated using
Sanger sequencing (Supplemental Figures 1 to 4,
Supplemental Tables 4 and 5). The absence of the
knocked-out protein was confirmed using western
blot analysis (Supplemental Figures 5 and 6,
Supplemental Tables 6 and 7). Additionally, attenu-
ation of the KO gene in the KO lines was further
confirmed using quantitative reverse transcriptase
polymerase chain reaction (Figure 2A, Supplemental
Table 8). Relevant SNPs contained in the control hu-
man induced pluripotent stem cells are detailed in
Supplemental Table 9. Of the 38 KOs attempted, KO
of 2 genes (ERCC2 and ABCC1) proved incompatible
with hiPSC survival, and 1 gene (SP4) was incompat-
ible with cardiac differentiation (Supplemental
Table 1).

https://doi.org/10.1016/j.jaccao.2023.11.008
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TABLE 1 Mechanistic Implications of Genes Associated With DIC

Group Gene First Author (Year) Ref# Mechanistic Implication

1 CAT Rajic et al (2009)31 ROS generation/handling32

CBR1 Armenian et al (2013)33 ROS generation/handling34

CBR3 Visscher et al (2012),9 Armenian (2013)33 ROS generation/handling34

ERBB2 Boekhout et al (2016)35 ROS generation/handling36

GPX3 Visscher et al (2015)12 ROS generation/handling37

GSTM1 Singh et al (2020)20 ROS generation/handling

GSTP Visscher et al (2012),9 Rossi et al (2009)38 ROS generation/handling39

HAS3 Wang et al (2014)40 ROS generation/handling41

NOS3 Krajinovic et al (2016)14 ROS generation/handling42

PLCE1 Hildebrandt et al (2017)43 ROS generation/handling44

RAC2 Armenian et al (2013),33 Rossi et al (2009)38 ROS generation/handling45

SPG7 Visscher et al (2013)10 ROS generation/handling46

2 PRDM2 Wells et al (2017)5 DNA damage47

MLH1 Krajinovic et al (2016)14 DNA damage48

RARG Aminkeng et al (2015)3 DNA damage3

3 HFE Armenian et al (2013)33 Iron uptake and homeostasis49

4 SLC22A17 Visscher et al (2015)12 DOX uptake13

SLC28A1 Visscher et al (2012)9 DOX uptake50

SLC28A3 Visscher et al (2012),9 Visscher et al (2013)10 DOX uptake19

ABCB4 Visscher et al (2012)9 DOX efflux51

ABCC2 Aminkeng et al (2015)3 DOX efflux52

ABCC5 Krajinovic et al (2016)14 DOX efflux14

ABCC9 Visscher et al (2015)12 DOX efflux53

ABCC10 Visscher et al (2015)12 DOX efflux53

5 CELF4 Wang et al (2016)6 Calcium handling54

MYH7 Wasielewski et al (2014)55 Calcium handling56

6 CYP2J2 Visscher et al (2015)12 Cardiac electrical activity57

RIN3 Aminkeng et al (2015)3 Cardiac electrical activity58

ZFN521 Aminkeng et al (2015)3 Cardiac electrical activity59

DIC ¼ doxorubicin-induced cardiotoxicity; DOX ¼ doxorubicin; ROS ¼ reactive oxygen species.
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Next, the remaining 35 KO hiPSC lines were
differentiated into cardiomyocytes and exposed to
5-log doses of doxorubicin (10�8 to 10�4 M) for
72 hours, followed by viability assessment to establish
the dose required to kill 50% of the cells (median le-
thal dose [LD50]) (Figure 2B). KO of the uptake drug
transporters SLC28A3, SCL22A17, and SLC28A1
increased viability after treatments with doxorubicin,
with LD50 values between 6.35 and 11.2 mM compared
with 3.78 mM in isogenic control hiPSC-CMs (Figure 2B,
Supplemental Figure 7). KO of ATP2B1, HMNT, POR,
CYBA, WDR4, and COL1A2 did not alter viability after
doxorubicin treatments (Figure 2B, Supplemental
Figure 8). KO of the rest of the genes (n ¼ 26)
increased the hiPSC-CMs’ sensitivity to doxorubicin
(Figure 2B, Supplemental Figures 9 and 10). LD50

values for KOs with increased sensitivity to
doxorubicin ranged between 0.32 mM (NOS3-KO and
MYH7-KO cardiomyocytes; P < 0.0001) and 2 mM
(GSTM1-KO cardiomyocytes; P ¼ 0.0018) compared
with 3.78 mM for isogenic control hiPSC-CMs.
FUNCTIONAL VALIDATION OF DIC-ASSOCIATED

GENES. Next, for each gene KO, we performed a
functional study to investigate their potential mech-
anistic implications for DIC. We categorized the genes
into 6 functional groups (Table 1) and adopted a
functional assay relevant to their mechanisms of ac-
tion (Central Illustration).

Genes involved in ROS production and handling. The
largest group of genes in our list (12 of 35) is associated
with ROS production and handling (Table 1). We
assessed the H2O2 levels in hiPSC-CMs after 24 hours of
doxorubicin treatment (Figures 3A to 3C). After doxo-
rubicin treatment, our analysis indicated that ROS
levels were lower in CBR1-KO (half maximal inhibitory
concentration [IC50]¼ 20.6mM; P¼0.0024) and CBR3-
KO (IC50 ¼ 31 mM; P ¼ 0.0069) hiPSC-CMs compared
with isogenic control hiPSC-CMs (IC50 ¼ 4.1 mM)
(Figure 3A). However, after doxorubicin treatment,
ROS levels were increased in SPG7-KO (IC50 ¼ 0.3 mM;
P ¼ 0.0006), HAS3-KO (IC50 ¼ 0.1 mM; P ¼ 0.0023),
GSTM1-KO (IC50 ¼ 0.26 mM; P ¼ 0.039), and RAC2-KO

https://doi.org/10.1016/j.jaccao.2023.11.008
https://doi.org/10.1016/j.jaccao.2023.11.008
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CENTRAL ILLUSTRATION Mechanistic Implications of Relevant Candidate Genes in
DOX-Induced Cardiotoxicity

Fonoudi H, et al. J Am Coll Cardiol CardioOnc. 2024;6(1):38–50.

The different mechanisms of cardiotoxicity after exposure to doxorubicin (DOX) are highlighted in colored boxes. AA ¼ arachidonic acid;

ABC ¼ adenosine triphosphate–binding cassette; EET ¼ epoxyeicosatrienoic acid; mRNA ¼ messenger RNA; ROS ¼ reactive oxygen species;

SLC ¼ solute carrier; SR ¼ sarcoplasmic reticulum.
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FIGURE 3 Reactive Oxygen Species Production, DNA Damage, and Iron Uptake

(A-C) Hydrogen peroxide levels measured by ROS-Glo assay (luminescence) in hiPSC-CMs after doxorubicin treatments (24 hours). (D) Representative images for gH2AX

immunofluorescent staining in hiPSC-CMs after treatments with doxorubicin (24 hours, 1 and 3 mM). (E) Quantification of DNA damage on the basis of gH2AX staining in

hiPSC-CMs using flow cytometry (ISO, n ¼ 5; PRDM2-KO, n ¼ 5; and MLH1-KO, n ¼ 5). (F) Effect of HFE knockout on hiPSC-CM iron uptake (ISO, n ¼ 6; and HFE-KO,

n ¼ 6) measured using calcein staining. Error bars represent �SEM. n ¼ full independent experimental replicates. *P < 0.05, **P # 0.01, ***P < 0.001, and

****P < 0.0001 by Mann-Whitney U test (A-C) and 2-way analysis of variance (E and F). DAPI ¼ 40,6-diamidino-2-phenylindole; IC50 ¼ half maximal inhibitory

concentration; other abbreviations as in Figure 2.
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(IC50 ¼ 0.5 mM; P ¼ 0.04) hiPSC-CMs (Figure 3B).
No significant differences in ROS production
were detected in PLCE1-KO, ERBB2-KO, CAT-KO,
GSTP1-KO, NOS3-KO, and GPX3-KO hiPSC-CMs
(Figure 3C).
Genes involved in DNA damage. RARG, PRDM2,
and MLH1 were linked to DNA damage
response3,19,47,48,60 (Table 1). Given our comprehen-
sive study of the role of RARG in DIC,19 we directed
our focus to PRDM2 and MLH1 to quantify double-
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stranded DNA breaks in hiPSC-CMs after doxorubicin
treatment. Our immunofluorescence analysis sug-
gests increased gH2AX staining in PRDM2-KO and
MLH1-KO compared with isogenic hiPSC-CMs
(Figure 3D). The elevated levels of gH2AXþ cells
were further confirmed using flow cytometry after
1- and 3-mM doxorubicin treatments (Figure 3E).
PRDM2 (22.1% � 1.88% [P ¼ 0.0283] and 32.16% �
2.43% [P ¼ 0.047]) and MLH1 (40.07% � 5.79%
[P < 0.0001] and 51.11% � 3.2% [P < 0.0001]) KOs
expressed higher levels of gH2AX after 1- and 3-mM
doxorubicin treatments compared with isogenic
control hiPSC-CMs (12.1% � 2.37% and 23.52% �
0.98%, respectively).
Genes involved in iron uptake and homeostasis. HFE
encodes the homeostatic iron regulator protein,
which controls iron transport and metabolism. The
intracellular iron disposition in cardiomyocytes was
examined by measuring iron-calcein quenching. No
significant differences in iron uptake were observed
in the presence of 0 and 10 mM Fe2þ. However, HFE-
KO hiPSC-CMs exposed to 100 mM of Fe2þ exhibited
significantly reduced iron uptake (Figure 3F).

Genes involved in doxorub ic in uptake and
efflux. Doxorubicin uptake was assessed by
measuring intracellular doxorubicin autofluorescence
using flow cytometry after drug treatments.13 After
the 1-mM doxorubicin treatment, SLC28A1-KO car-
diomyocytes exhibited significantly reduced doxoru-
bicin uptake (4.6% � 2.5%; P ¼ 0.0039) compared
with isogenic control hiPSC-CMs (18.63% � 3.24%)
(Figure 4A). Conversely, doxorubicin uptake was
significantly higher in ABCB4-KO (52.73% � 3.2%;
P < 0.0001), ABCC5-KO (48.45% � 5.5%; P < 0.0001),
ABCC9-KO (29.98% � 2.7%; P ¼ 0.0327), and ABCC10-
KO hiPSC-CMs (60.18% � 2.6%; P < 0.0001)
(Figure 4A). After 1-mM treatments, no significant
differences in doxorubicin uptake were observed
in SLC22A17-KO, SLC28A3-KO, and ABCC2-KO
hiPSC-CMs (Figure 4A).

Upon increasing the doxorubicin concentration to
3 mM, all the cells, except for ABCC10-KO, exhibited
significant differences in doxorubicin uptake
compared with control. Doxorubicin uptake was
significantly lower in SLC22A17-KO (43.55% � 3.04%;
P ¼ 0.0005), SLC28A1-KO (35.11% � 2.63%;
P < 0.0001), and SLC28A3-KO (35.24% � 1.36%;
P < 0.0001) hiPSC-CMs compared with isogenic con-
trol hiPSC-CMs (57.68% � 3.11%) (Figure 4A).
Conversely, 3-mM doxorubicin treatment led to
significantly higher doxorubicin uptake in ABCB4-KO
(71.77% � 3.02%; P ¼ 0.0001), ABCC2-KO (74.52% �
1.57%; P ¼ 0.0003), ABCC5-KO (79.52% � 3.79%;
P < 0.0001), and ABCC9-KO (68.57% � 1.02%;
P ¼ 0.04) hiPSC-CMs (Figure 4A).
Genes involved in ca lc ium handl ing . CELF4 and
MYH7 play crucial roles in controlling cardiomyocyte
function by affecting calcium transients. KO of CELF4
resulted in a significant shortening of full width at
half maximum (99.89% � 5.67%; P < 0.0001), calcium
transient duration at 75% (158.04% � 8.79%;
P < 0.0001), and decay time (60.83% � 3.5%;
P < 0.0001) of calcium transients compared with
isogenic control hiPSC-CMs (328.15% � 17.27%,
449.41% � 23.04%, and 172.73% � 8.27%, respec-
tively) (Figure 4B). On the contrary, KO of MYH7
resulted in a significant prolongation in full width at
half maximum (441.44% � 18.21%; P < 0.0001), cal-
cium transient duration at 75% (543.82% � 22.4%;
P < 0.0023), and decay time (262.82% � 11.56%;
P < 0.0001) compared with isogenic control hiPSC-
CMs (Figure 4B).

GENE INVOLVED IN CARDIAC ELECTRIC ACTIVITY.

We identified 3 genes, RIN3, ZFN521, and CYP2J2,
associated with cardiac electric activity57-59 (Table 1).
Impedance measurement revealed that KO of RIN3
increased the pulse width at 50% (1.41% � 0.007% vs
0.89% � 0.006%; P < 0.0001) and upstroke velocity
(331% � 3.37% vs 214% � 7.02%; P < 0.0001) and
reduced the relaxation velocity (�166% � 2.94%
vs �192% � 6.74%; P < 0.0001), compared with
isogenic control hiPSC-CMs (Figure 4B). KO of ZFN521
resulted in hiPSC-CMs with increased pulse width at
50% (1.17% � 0.005%; P < 0.0001) and upstroke ve-
locity (141% � 1.55%; P < 0.0001) and reduced relax-
ation velocity (�43.2% � 0.32%; P < 0.0001). KO of
CYP2J2 resulted in increased beat rate (38.39% �
3.82% vs 21.7% � 0.26%; P < 0.0004) and pulse width
at 50% (1.03% � 0.01%; P < 0.0001) and decreased
upstroke velocity (15.53% � 0.5%; P < 0.0001) and
relaxation velocity (�13.98% � 0.58%; P < 0.0001),
compared with isogenic control hiPSC-CMs
(Figure 4B).

DISCUSSION

Inter-individual cardiotoxic response to doxorubicin
is variable, indicating that genetics plays an impor-
tant role in DIC response. The functional validation of
genes and variants associated with cardiotoxicity risk
is essential to improve the outcome of anthracycline
regimens and to develop cardioprotective treatments.



FIGURE 4 Doxorubicin Uptake, Calcium Handling, and Contractility

(A) Doxorubicin uptake in hiPSC-CMs with knockouts of SLC and ABC transporters (isotype, n ¼ 11; SLC28A3-KO, n ¼ 4; SLC22A17-KO, n ¼ 6; SLC28A1-KO, n ¼ 4;

ABCC2-KO, n ¼ 4; ABCB4-KO, n ¼ 7; ABCC5-KO, n ¼ 4; ABCC9-KO, n ¼ 4; and ABCC10-KO, n ¼ 4). n ¼ full independent experimental replicates. (B) Effect of knocking

out MYH7 and CELF4 on calcium transients. Left: representative calcium transients. Middle left: full width at half maximum (FWHM). Middle right: calcium transient

duration 75% (CTD75). Right: decay time. (C) Contractility analysis using impedance measurement in RIN3-KO, ZFN521-KO, and CYP2J2-KO hiPSC-CMs (ISO, n ¼ 41;

RIN3-KO, n ¼ 48; ZFN521-KO, n ¼ 48; and CYP2J2-KO, n ¼ 89). n ¼ number of assessed wells of 96-well plate derived from at least 3 independent rounds of

differentiation (B and C). Error bars represent �SEM. *P < 0.05, **P# 0.01, ***P < 0.001, and ****P < 0.0001 by 2-way analysis of variance (A) and 1-way analysis of

variance (B and C). Abbreviations as in Figure 2.
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KNOCKING OUT DIC-RELATED GENES ALTERS THE

hiPSC-CM RESPONSE TO DOXORUBICIN TREATMENT. Of
the 35 genes studied, 3 gene KOs were protective of
DIC (SLC28A3, SLC22A17, and SLC28A1), 6 gene KOs
did not have a significant effect on DIC (ATP2B1,
HNMT, POR, CYBA, WDR4, and COL1A2), and 26 KOs
increased DIC (ABCC10, ABCC2, ABCB4, ABCC5,
ABCC9, CAT, CBR1, CBR3, CYP2J2, ERBB2, GPX3,
GSTM1, GSTP1, HAS3, HFE, MLH1, MYH7, NOS3,
PLCE1, PRDM2, RAC2, RARG, RIN3, SPG7, CELF4,
and ZFN521).

ROS PRODUCTION IS THE MAJOR MECHANISM

CAUSING DIC. The largest functional group studied
comprised genes related to ROS production. H2O2

production analysis in cardiomyocytes exposed to
doxorubicin revealed reduced production in CBR1-KO
and CBR3-KO hiPSC-CMs, indicating a potential link
to cardiotoxicity via reduced metabolism of doxoru-
bicin to doxorubicinol by carbonyl reductases. In
contrast, HAS3-KO, SPG7-KO, GSTM1-KO, and RAC2-
KO exhibited higher ROS production and increased
sensitivity to doxorubicin, indicating a role of these
genes in H2O2 handling. Notably, no significant dif-
ferences in H2O2 production were observed in CAT-
KO, NOS3-KO, PLCE1-KO, GPX3-KO, ERBB2-KO, and
GSTP1-KO. This might suggest that the DIC observed
in the KO of these genes is due to the defects in the
handling and detoxification of additional ROS prod-
ucts and/or participation in other mechanisms related
to doxorubicin toxicity besides ROS generation. In
fact, it has been shown that CAT, glutathione S-
transferases, and glutathione peroxidases have
played crucial roles in detoxifying metabolites
generated during oxidative stress.61

DNA DAMAGE RESPONSE IS ELEVATED IN PRDM2-KO

AND MHL1-KO. RARG inhibits TOP2B, which binds to
DNA and stabilizes the intermediate TOP2B-mediated
double-stranded DNA breaks. KOs of the RARG gene
activate this DNA damage pathway, leading to
increased cardiac cell death. Similar mechanisms are
thought to exist in PRDM2 and MLH1 gene KOs. We
detected higher levels of DNA damage after doxoru-
bicin treatments PRDM2-KO and MHL1-KO, suggest-
ing a protective role for these genes against
doxorubicin-induced DNA damage.

HFE-KO CARDIOMYOCYTES EXHIBIT REDUCED IRON

UPTAKE. Our results indicate reduced iron uptake in
HFE-KO cardiomyocytes compared with isogenic
control, particularly evident at high Fe2þ concentra-
tions (100 mM). Considering the important role of iron
in mitochondrial function and the energy-demanding
nature of cardiomyocytes, this impaired iron uptake
may contribute to the heightened DIC observed in
HFE-KO cardiomyocytes, as evidenced by the exac-
erbated risk for heart failure in the context of
iron deficiency.62

KOs OF SLC TRANSPORTERS REDUCE AND ABC

TRANSPORTERS KOs INCREASE THE DOXORUBICIN

UPTAKE. KOs of SLC family members in hiPSC-CMs
showed reduced doxorubicin uptake compared
with isogenic controls. In addition, KO of ABC family
members in hiPSC-CMs resulted in an elevation of
doxorubicin uptake. Our results indicate that SLC
transporters play a crucial role in facilitating the influx
of doxorubicin into the cardiomyocytes, thereby
contributing to an increased risk for DIC. Conversely,
ABC transporters are implicated in the efflux of
doxorubicin out of the cells, reducing intracellular
doxorubicin levels and establishing them as potential
cardioprotective gene targets.

CELF4-KO AND MYH7-KO hiPSC-CMs DEMONSTRATE

ALTERED CALCIUM TRANSIENTS. CELF4 is involved
in regulatory splicing events essential for the proper
functioning of cardiac troponin T, which in turn plays
an essential role in proper calcium signaling in car-
diomyocytes.63 MYH7, a gene encoding myosin heavy
chain beta isoform, is associated with increased intra-
cellular calcium levels in patients with hypertrophic
cardiomyopathy.64 Our analysis revealed alterations in
multiple aspects of calcium transients in both CELF4-
KO and MYH7-KO, suggesting impaired calcium
handling as one of the mechanisms underlying DIC.

CONTRACTILE PROPERTIES OF ZFN521-KO, RIN3- KO,

AND CYP2J2-KO hiPSC-CMs ARE AFFECTED. ZFN521
regulates the ventricular conduction system in the
heart,65 while RIN3 interacts with and regulates
RAB5, facilitating membrane trafficking of the
voltage-gated potassium channel KCNQ1 and thereby
regulating potassium currents.66 CYP2J2 KO has been
shown to result in QT-interval prolongation on
echocardiography.67 Impedance analysis of ZFN521-
KO, RIN3-KO, and CYP2J2-KO hiPSC-CMs revealed
significant differences in contractile properties,
including beat rate, pulse width at 50%, upstroke
velocity, and relaxation velocity, compared with the
isogenic control.

STUDY LIMITATIONS. Although we investigated the
KO of gene candidates from GWAS and candidate
gene association studies, these studies identified
SNPs linked to AIC. Because not all the SNPs cause
loss of function, studying individual SNP corrections
and/or patient-specific hiPSC-CMs can shed further
light on this matter. Additionally, we generated KOs
of selected candidate genes on the basis of their po-
tential link to AIC and expression in hiPSC-CMs.
Although not all the generated KOs showed



PERSPECTIVES

COMPETENCY IN MEDICAL KNOWLEDGE: In

this study, we have functionally validated all current

DIC-associated genes that are expressed in cardio-

myocytes. This comprehensive validation represents

the first step in translating functionally validated

genotype-phenotype correlations into clinical tests.

Once the relevance of a gene in DIC is identified, and

its mechanism of action is known, the next step in-

volves validating the role of genetic variants in

modulating the response to doxorubicin. This infor-

mation will serve as a unique platform for designing

polygenic risk scores that can benefit patients un-

dergoing doxorubicin treatment. In addition, a precise

understanding of the genetic basis of DIC is crucial for

identifying druggable targets and discovering inno-

vative cardioprotective therapies.

TRANSLATIONAL OUTLOOK: One major barrier in

the clinical application of this study lies in determining

the genetic contribution to DIC risk for each gene for

all sexes and ancestries. Currently, there is a scarcity

of studies exploring the effects of sex and diverse

genetic backgrounds on the mechanisms of DIC.

Establishing patient-specific risk factors is a crucial

prerequisite before the clinical implementation of the

findings from this study can be applied.
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significant differences in LD50 after doxorubicin
treatment, repeating this process using KO of a gene
with no proven function in AIC could further validate
these findings. Additionally, the application of more
mature cardiomyocytes could assist to harness the
differences in a more physiologically relevant system.
The present study was focused only on the effect of
KOs on cardiomyocytes, but cardiotoxicity might
stem from malfunction in other cell types, including
endothelial cells and cardiac fibroblasts. Finally, for
each KO, only 1 functional study was performed;
additional functional studies can provide a more
detailed understanding of each gene contribution to
the formation of DIC.

CONCLUSIONS

This study demonstrates that genomic analysis,
coupled with human induced pluripotent stem cell
modeling, is an efficient platform for assessing the
mechanisms of DIC. Through high-throughput assays,
we validate the influence of DIC genes on cell
viability, ROS production, DNA damage, doxorubicin
uptake, iron uptake, calcium handling, and electric
activity in response to doxorubicin. Our results
confirm that more than 55% of the DIC genes identi-
fied to date in association studies are expressed in
cardiac cells, reliably recapitulating alterations in DIC
phenotype in the hiPSC-CM model. Furthermore, for
each gene, we provide a functional assay to validate
its role in DIC.
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