p130CAS Is Required for Netrin Signaling and Commissural Axon Guidance

Guofa Liu, Weiquan Li, Xue Gao, Xiaoling Li, Claudia Jürgensen, Hwan-Tae Park, Nah-Young Shin, Jian Yu, Ming-Liang He, Steven K. Hanks, Jane Y. Wu, Kun-Liang Guan, and Yi Rao

Introduction

Netrins are an important family of axon guidance cues. Here, we report that netrin-1 induces tyrosine phosphorylation of p130CAS (Crk-associated substrate). Our biochemical studies indicate that p130CAS is downstream of the Src family kinases and upstream of the small GTPases Rac1 and Cdc42. Inhibition of p130CAS signaling blocks both the neurite outgrowth-promoting activity and the axon attraction activity of netrin-1. p130CAS RNA interference inhibits the attraction of commissural axons in the spinal cord by netrin-1 and causes defects in commissural axon projection in the embryo. These results demonstrate that p130CAS is a key component in the netrin signal transduction pathway and plays an important role in guiding commissural axons in vivo.

Key words: netrin-1; p130CAS; Rac1; Cdc42; signaling; commissural axons

Received Oct. 24, 2006; revised Dec. 12, 2006; accepted Dec. 14, 2006.

This work was supported by the National Institutes of Health (Y.R., K.G., J.W., S.T.H.). We thank Dr. R. J. Miller and Dr. Peter T. Toth for help with confocal imaging, Dr. E. T. Stoeckli for the anti-axonin-1 antibody, Dr. R. Sakai for anti-p130CAS antibody, and Justin Meyer for assistance.

Correspondence should be addressed to Yi Rao, Department of Neurology, Northwestern University Feinberg School of Medicine, 303 East Chicago Avenue, Ward 10-185, Chicago, IL 60611. E-mail: y-rao@northwestern.edu.

DOI:10.1523/JNEUROSCI.4616-06.2007

The Journal of Neuroscience, January 24, 2007 • 27(4):957–968 • 957
Materials and Methods

We used the following antibodies: anti-Fyn, anti-actin, anti-p130Cas, and anti-phospho-FAK (Santa Cruz Biotechnology, Santa Cruz, CA); CAS phosphotyrosines 165, 249, and 410 antibodies (Cell Signaling Technology, Beverly, MA); anti-FAK (Santa Cruz Biotechnology; Transduction Laboratories, Lexington, KY); anti-Cdc42, anti-Rac1, and anti-DCC (BD Biosciences, Franklin Lakes, NJ); anti-phosphotyrosine antibody 4G10 (Upstate Biotechnology, Lake Placid, NY); anti-phospho-Src (Y418) (Cell Signaling Technology, Beverly, MA); anti-hemagglutinin (HA) (Covance, Princeton, NJ); and anti-axonin-1 (gift from E. T. Stoeckli, University of Zurich, Zurich, Switzerland); and anti-p130 Cas (for immunohistochemistry (gift from R. Sakai, National Cancer Research Institute, Tokyo, Japan). PP3[4-amino-7-phenylpyrazolo[3,4-d]pyrimidine] and 4-amino-7-phenylpyrazolo[3,4-d]pyrimidine (PP3) were obtained from Calbiochem (La Jolla, CA).

Plasmids encoding DCC-ΔP1 (Δ1147–1170), ΔP2 (Δ1335–1356), ΔP3 (Δ1412–1447), 1/2 ΔP3 (Δ1426–1447); Y1420F; and 4YF (Y1261F, Y1272F, Y1363F, Y1420F) have been described previously (Li et al., 2004). p130Cas (F15) is a mouse p130Cas mutant, in which all 15 YXXP tyrosines in the substrate domain have been mutated to phenylalanines (Shin et al., 2004).

The targeted sequence of short hairpin-based RNA (shRNA) construct of p130Cas is: GAAGGTACACGTCAAGTTCTC. The human U6 promoter in pAVU6 +27 was replaced by the mouse U6 promoter from mouse genomic DNA by PCR. The target sequence was inserted between the SalI site and the XhoI site. The mouse U6 promoter is known to function in chickens (Bren et al., 2004; Dai et al., 2005).

The targeted sequence of small interfering RNA (siRNA) is: GAUGUGCUUGGAGUGAACGGAGACGCAAC AAA.

Netrin-1 protein was purified with anti-myc tag affinity matrix from the conditioned media of human embryonic kidney 293 (HEK293) cells stably secreting netrin-1. The control was made by sham purification from the conditioned media from HEK293 cells that had not been transfected with a cDNA expressing the myc-tagged netrin-1.

Dissociated primary neuron cultures. The dissociated culture procedure was done as described previously (Liu et al., 2004) with some modifications. Briefly, embryos were removed from freshly killed pregnant mice of the appropriate stage. The brain or the spinal cord was dissected in cold HBSS medium (Invitrogen, San Diego, CA), and meninges were removed. The cortices or spinal cords were cut into small pieces with scissors and trypsinized at 37°C for 15 min. After triturating several times, cells were resuspended in DMEM with the anti-p130Cas antibody (rabbit, 1:200) and the anti-DCC antibody (mouse, 1:1000) at 37°C for 1 h. After being washed on coverslips in PBS three times, cells were incubated with the secondary antibodies (anti-rabbit-Cy3, 1:200; anti-mouse-Cy2, 1:200) at 37°C for 1 h. Images were taken under a confocal microscope.

For analysis of neurite outgrowth, cortical neurons were isolated from E15 mouse embryos and dissociated. Neurons (4 × 10^6/group) were mixed with Venus yellow fluorescent protein (YFP) (1 μg) plus control vector (4 μg) or p130Cas shRNA construct (4 μg) and immediately placed in Nucleofector (Amaxa Biosystems, Gaithersburg, MD). The

Figure 1. Expression of p130Cas in primary culture neurons. a–f: Expression of DCC (a, d) and p130Cas (b, e) in primary cortical neurons; g: the merged image of a and b; h: is the merged image of d and e. d, e, and f: are higher-magnification images of the boxed regions in a, b, and c, respectively. Neurons from E15 mice cortex were cultured overnight and immunostained with anti-DCC (6G7—449) and anti-p130Cas (SC-860). Scale bar, 10 μm. g–m: Expression of DCC (g, j) and p130Cas (h, k) in E13 primary spinal cord neurons. h: the superimposed image of g and h. i: the superimposed image of j and k. m: the phase image of n. o: the higher-magnification image of the boxed region of image n. p130Cas is strongly expressed in the commissural axons as they project toward the floor plate (white arrow), the ventral commissural region (VC, arrowhead), and lateral fasciculus (LF; green arrow). Scale bar, 100 μm.
cells were moved into warm media (containing 10% FCS) after electroporation using O-005 program and plated on laminin (5 μg/ml) and poly-l-lysine (50 μg/ml)-coated coverslips and cultured in DMEM, 10% FCS, and penicillin/streptomycin at 37°C with 5% CO2 for 2 h. After settling on the coverslips, cells were cultured in DMEM with B27 (Invitrogen) and penicillin/streptomycin at 37°C with 5% CO2 for 20 or 40 h

staged according to Hamburger and Hamilton (1951). The electroporation procedure was essentially done as described previously (Liu et al., 2004). DNA solution was injected into the central canal of the neural tube of chick embryos in ovo at stages 12–15. The electroporation program was 25 V, 5 ms, 5 pulses (ECM830; BTX Instrument Division of
Genetronics, San Diego, CA). Embryos were isolated at stages 20–21 and examined for YFP fluorescence under the microscope. The half of the spinal cord showing fluorescence was isolated as an open-book preparation and cocultured with an aggregate of control or netrin-1 secreting HEK cells for 24 h. Axon turning was counted when the angle of turning toward the HEK aggregate was >5°. The percentage of turning axons was calculated from the numbers of fluorescent axons turning toward the HEK cell aggregate divided by the total numbers of fluorescent axons within 300 μm of the HEK cell aggregates. Images were collected under a confocal microscope.

Analysis of commissural axon projection in vivo. Collection of chick embryos and electroporation procedures were described above. Chick embryos were killed between stages 22 and 23 after electroporation. This was chosen for analysis, because it is the time when the commissural axons in the lumbosacral region cross the midline (Stoeckli et al., 1997; Bourikas et al., 2005). The lumbosacral region of the spinal cord was isolated and the fluorescence examined under a microscope. Samples expressing green fluorescent protein (GFP) were chosen for opening at the roof plate (open-book preparation). Whole-mount immunostaining of the spinal cord was performed after fixation. Briefly, samples were permeabilized in 0.5% Triton for 15 min and blocked for 30 min in the blocking buffer (PBS containing 5% goat serum and 0.1% Triton X-100) at room temperature. Tissues were incubated with the first antibody (rabbit, anti-axonin-1, 1:1000) in the blocking buffer at 37°C for 2 h. After being rinsed with 1× PBS, tissues were incubated with the second antibody (anti-rabbit-Cy3 antibody, 1:200) at 37°C for 2 h. After being rinsed with PBS three times, the spinal cord in the open-book preparation was mounted in Gel/Mount (Biomeda, Foster City, CA). Images were taken under the confocal microscope. The percentage of axons reaching the floor plate was quantified from the numbers of fluorescently labeled commissural axons reaching across over the floor plate divided by the total numbers of fluorescent axons within 100 μm from the floor plate.

The lumbosacral region of the spinal cord expressing GFP at stage 23 was collected. Transverse sections of 200 μm were cut and mounted in Gel/Mount. The fluorescent images were also taken under the confocal microscope.

In vivo electroporation of pregnant mice was performed as described previously (Saba et al., 2003) with minor modifications. The embryonic day 10.5 (E10.5) pregnant mice were anesthetized by intraperitoneal injection of 10% Nembutal solution. The abdominal skin and wall were cut and the uterus was carefully taken out. The DNA solution was injected into the central canal of the spinal cord. The electroporation program was 22 V, 5 ms, 5 pulses (BTX, ECM830). The uteri were carefully put back into the abdominal cavity, and the abdominal wall and skin were sewn up. The mice were killed 2 d later at stage E12.5 and fixed in 4% paraformaldehyde solution. Sections of embryos spinal cord (200 μm) were transversely cut and mounted in Gel/Mount. The fluorescent images were also taken under the confocal microscope.

Figure 3. Induction of p130CAS tyrosine phosphorylation by netrin-1 required FAK and Fyn. a, The C-terminal domain of FAK (FRNK) and Src family kinase-specific inhibitor PP2 inhibited netrin-induced p130CAS tyrosine phosphorylation in HEK cells. HEK293 cells were transfected with DCC, HA-CAS, and Myc-FRNK. Tyrosine phosphorylation of p130CAS was determined by immunoprecipitation with an anti-HA antibody and immunoblotting with the anti-phosphotyrosine antibody. b, PP2, but not PP3, blocked netrin-stimulated tyrosine phosphorylation of endogenous p130CAS in primary neurons. Cortical cells (6 × 10^4 plate/well) were stimulated with netrin-1. The anti-p130CAS antibody was used to immunoprecipitate proteins, and the blot was analyzed with the anti-phosphotyrosine antibody (top) or anti-p130CAS antibody (bottom). c, A p130CAS mutant, myc-p130CAS (F15), could not block netrin-induced FAK phosphorylation. HEK cells were transfected with DCC, HA-CAS, and myc-p130CAS (F15). The anti-FAK antibody was used to immunoprecipitate the extracts, and anti-phosphotyrosine was used to probe the immunoblots. The bottom panel showed Western blot analysis with the anti-FAK antibody to control for amount of input proteins. d, The p130CAS mutant, CAS-SH3 tagged by HA, also could not inhibit netrin-stimulated FAK phosphorylation. HEK cells were transfected with DCC, myc-FAK, and HA-CAS-SH3. FAK phosphorylation was detected by immunoprecipitation with anti-my antibody immunoprecipitate and immunoblot with the anti-phosphotyrosine antibody. e, p130CAS (F15) could not block Fyn tyrosine phosphorylation. HEK293 cells were transfected with DCC, Fyn, and myc-p130CAS (F15). Fyn tyrosine phosphorylation was analyzed by immunoprecipitation with an anti-Fyn antibody and immunoblotting with an anti-phospho-Src antibody. f, Netrin-1 increased FAK phosphorylation at tyrosine residue 756 in the p130CAS−/− mouse embryonic fibroblasts, which were blocked by PP2.

Results
Netrin-1 stimulates tyrosine phosphorylation of p130CAS and its association with FAK and Fyn
We used antibodies for p130CAS and DCC to examine whether p130CAS is expressed in axons and growth cones containing DCC.
We found coexpression of p130CAS with DCC in the soma and cytoplasmic membrane as well as the axons, axonal branches, and the growth cones of primary neurons from the neocortex of E15 mice (Fig. 1a–f). Confocal analysis indicates partial colocalization of p130CAS with DCC (Fig. 1c,f). Similar observations were made when anti-p130CAS and anti-DCC antibodies were used to examine their localization in primary neurons from the dorsal spinal cord of E13 mouse embryos (Fig. 1g–m). Immunohistochemistry staining showed that p130CAS was strongly expressed in commissural axons of E13 embryonic spinal cord (Fig. 1n–o).

We observed that netrin-1 increased the phosphorylation of proteins of ~130 kDa, one of which was FAK (Liu et al., 2004). Antibody depletion experiments showed that FAK was not the only protein in that band (Liu et al., 2004). To determine whether p130CAS is among them, we examined the p130CAS tyrosine phosphorylation after netrin-1 stimulation of dissociated E15 primary cortical neurons. We either immunoprecipitated extracts with the anti-p130CAS antibody and probed the Western blots with the anti-phosphotyrosine antibody or reversely immunoprecipitated with the anti-phosphotyrosine antibody and probed the Western blots with the anti-p130CAS antibody. Results from both procedures showed that tyrosine phosphorylation of p130CAS was induced by netrin-1 within 5 min (Fig. 2a,b).

To directly detect the tyrosine phosphorylation of p130CAS, we used antibodies recognizing phosphotyrosines at residues 165 and 249 of p130CAS. Netrin-1 increased tyrosine phosphorylation at both sites of p130CAS in E15 primary cortical neurons (Fig. 2c) (supplemental Fig. 1, available at www.jneurosci.org as supplemental material) and in dissociated E13 dorsal spinal cord neurons (Fig. 2d,e). Induction of tyrosine phosphorylation in p130CAS was inhibited by a function-blocking antibody against DCC (Fig. 2d).

p130CAS is known to form a protein–protein interaction complex with the Src family kinases and FAK. Because netrin-1 activates Fyn and FAK (Li et al., 2004; Liu et al., 2004; Ren et al., 2004), we performed immunoprecipitation experiments to test whether netrin-1 regulated the interaction of p130CAS with Fyn and FAK. Netrin-1 increased the interaction of p130CAS with FAK (Fig. 2f) and Fyn (Fig. 2g) in E15 primary cortical neurons.

There are three conserved intracellular domains (P1, P2, and P3 in DCC), among which P3 is required for netrin-induced Fyn and FAK phosphorylation (Li et al., 2004; Ren et al., 2004). We investigated the domains of DCC involved in p130CAS tyrosine phosphorylation after netrin-1 stimulation. Deletion of P1 (residues 1147−1171) or P2 (residues 1335−1356) did not inhibit the induction of p130CAS phosphorylation by netrin-1 (Fig. 2h). However, deletion of P3 domain (residues 1412−1447) (Fig. 2h) or half of the P3 domain (residues 1426−1447) blocked the effect of netrin-1 on p130CAS phosphorylation (Fig. 2i). Furthermore, mutation of one tyrosine phosphorylation site (1420Y/F) or all of sites (1261Y/F, 1272 Y/F, 1363 Y/F, Y 1420 Y/F) of DCC intracellular domains had no effect on the induction of p130CAS tyrosine phosphorylation by netrin-1 (Fig. 2i). The domain in DCC required for p130CAS phosphorylation is similar to that for Src and FAK phosphorylation (Li et al., 2004).

p130CAS is downstream of FAK and Src but upstream of Rac1 and Cdc42

FAK and Src family kinases can be activated by netrin-1 (Li et al., 2004; Liu et al., 2004; Ren et al., 2004). To determine their relationship with p130CAS, we tested the effect of FAK and Src inhibition on p130CAS phosphorylation, as well as the effect of inhibition on FAK and Fyn phosphorylation.

To examine the role of FAK in netrin-induced p130CAS tyrosine phosphorylation, HEK293 cells were cotransfected with DCC, p130CAS tagged with the hemagglutinin epitope (HA-CAS), and a myc epitope tagged form of FRNK (FAK-related nonkinase), a dominant-negative FAK mutant containing the C-terminal noncatalytic region of FAK that can bind to FAK-interacting proteins but cannot function as an active kinase. p130CAS phosphorylation was assayed by immunoprecipitation with the anti-HA antibody and probed with the anti-phosphotyrosine antibody. Netrin-1 induced tyrosine phosphorylation of p130CAS in a DCC-dependent manner (Fig. 3a). The induction of p130CAS tyrosine phosphorylation by netrin-1 was inhibited by expression of FRNK (Fig. 3a), indicating that FAK is required for p130CAS phosphorylation. Netrin-induced p130CAS tyrosine phosphorylation was also inhibited by PP2, a pharmacological inhibitor of the Src family kinases, but not PP3, an inactive control for PP2 (Fig. 3a). Netrin induction of tyrosine phosphorylation of endogenous p130CAS in E15 neurons was also inhibited by PP2 (Fig. 3b). These findings indicate that netrin-induced tyrosine phosphorylation of p130CAS requires FAK and Src family kinases.

To determine whether netrin-induced FAK phosphorylation depends on p130CAS, we used two p130CAS mutants: p130CAS (F15), in which all of 15 tyrosine residues in the substrate binding domain were mutated to phenylalanine; and HA-CAS-SH3, which contains only the SH3 domain of p130CAS. p130CAS (F15)
acts as a dominant-negative mutant, because the tyrosine residues in the substrate binding domain are required for downstream signaling (Manie et al., 1997; Shin et al., 2004; Brabek et al., 2005). HA-CAS- SH3 acts as a dominant-negative, because it can bind to proteins interacting with SH3 but lacks domains that interact with downstream signals (Shin et al., 2004; Brabek et al., 2005). These mutants were individually transfected into HEK293 cells expressing DCC and FAK. Neither could block netrin-induced tyrosine phosphorylation of FAK (Fig. 3, c, d). Similarly, Fyn phosphorylation after netrin-1 stimulation could not be inhibited by p130(CAS) (F15) (Fig. 3e). To rule out the possibility that the failure of the CAS dominant-negative mutants to block netrin-1 induced FAK phosphorylation could be attributable to the presence of endogenous p130(CAS) in HEK cells, we used mouse embryonic fibroblasts lacking p130(CAS) (CAS−/− MEF). After DCC was transfected into CAS−/− MEFs, netrin-1 increased FAK phosphorylation in these cells (Fig. 3f), indicating that the absence of endogenous p130(CAS) could not block FAK phosphorylation. Netrin induction of FAK phosphorylation in CAS−/− MEFs could be reduced by PP2, the Src family kinase inhibitor (Fig. 3f). Together, these results indicate that p130(CAS) is downstream of FAK and the Src family kinases in netrin-1 signaling.

Netrin is known to activate the small GTPase of Rho family: Rac1 and Cdc42 (Li et al., 2002; Shekarabi and Kennedy, 2002; Shekarabi et al., 2005). To study whether p130(CAS) is involved in Rac1 and Cdc42 activation, we introduced the p130(CAS) (F15) mutant into HEK293 cells expressing DCC and HA-CAS. As described previously (Wong et al., 2001), the GTP-bound active forms of Rac1 and Cdc42 were pull-down by GST fusion protein of the CRIB domain of PAK1 and detected by specific antibodies to Rac1 and Cdc42 (Miyamoto et al., 2006). As shown in other studies (Li et al., 2002; Shekarabi and Kennedy, 2002; Shekarabi et al., 2005), netrin-1 activated both Rac1 and Cdc42 (Fig. 4). p130(CAS) (F15) blocked netrin activation of Rac1 and Cdc42 (Fig. 4).

These results indicate that p130(CAS) is required in the signaling pathway from netrin-DCC to Rac1 and Cdc42.

p130(CAS) is essential for netrin-1-induced neurite outgrowth of cortical neurons

Netrin can promote neurite outgrowth and axon turning. To study the function of p130(CAS), we designed short hairpin based RNA interference (RNAi) constructs and small interfering RNA targeting a sequence common to mouse and chicken p130(CAS).

One shRNA construct and one siRNA significantly reduced the level of endogenous p130(CAS) protein in E15 cortical neurons (Fig. 5m), and these RNAi reagents were used in subsequent experiments.

Neurite outgrowth promotion activity of netrin-1 was assayed in primary cortical neurons from E15 mice. They were transfected with a construct expressing Venus YFP together with the control shRNA vector or the p130(CAS) shRNA. These neurons were stimulated with netrin-1 and cultured for 20 h. In neurons...
transfected with the control vector (Fig. 5a,b), neurite outgrowth was stimulated by netrin-1: without netrin treatment, the length of the longest neurite of each neuron is 25.15 ± 1.26 μm, and the total length of all neurites from each neuron is 52.62 ± 2.27 μm;
with netrin treatment, the length of the longest neurite of each neuron is 56.91 ± 2.72 μm, and the total length of all neurites from each neuron is 90.04 ± 3.03 μm (Fig. 5ij).

p130Cas shRNA inhibited netrin-induced neurite outgrowth: the length of the longest neurite per neuron was increased from 24.51 ± 1.52 μm without netrin to 34.13 ± 2.58 μm with netrin, and the total length of all neurites per neuron was increased from 54.06 ± 2.18 μm without netrin to 64.00 ± 2.98 μm with netrin (Fig. 5c–d,i,j). Comparing netrin-induced outgrowth from vector-transfected neurons (Fig. 5i,j, group II) to netrin-induced outgrowth from p130Cas shRNA-transfected neurons (Fig. 5i,j, group IV), the difference is statistically significant ([p < 0.0001 between groups II and IV (Fig. 5i,j)]. Similar effects of p130Cas shRNA on netrin-induced neurite outgrowth were observed after 40 h of RNAi transfection (Fig. 5c–h,k,l). The neurite outgrowth promotion activity of netrin-1 was not blocked by the control shRNA (supplemental Fig. 2, available at www.jneurosci.org as supplemental material). Together, these results indicate that p130Cas is required for netrin-induced neurite outgrowth from primary neurons.

p130Cas is required for axon attraction by netrin-1

The commissural axons in the neural tube are a model for studying netrin attraction (Tessier-Lavigne et al., 1988; Kennedy et al., 1994; Serafini et al., 1994). To determine whether p130Cas is required for axon turning toward netrin-1, we used the open-book assay with commissural axons from the neural tube of chick embryos. As described previously (Liu et al., 2004), the Venus YFP construct was electroporated into the chick neural tube at stages 12–15. An explant of the neural tube was placed to one side of the open book. Projecting axons were visualized by Venus YFP expression. More than 90% of axons projecting from the dorsal spinal cord of chick embryos electroporated at these stages were commissural axons as confirmed by immunostaining with the anti-axonin-1 antibody (Figs. 8, 9) (supplemental Fig. S1, available at www.jneurosci.org as supplemental material).

Commissural axons projected straight toward the floor plate when the neural tube explants were cocultured with control HEK293 cells (Fig. 6a). Axons turned toward HEK cells secreting netrin-1 (Fig. 6b). Cotransfection of Venus YFP with either the vector or the wild-type p130Cas did not affect netrin attraction (Fig. 6df). However, when the dominant-negative mutant p130Cas (F15) was cotransfected into the commissural axons
together with Venus YFP, attraction by netrin was significantly inhibited (Fig. 6h,i).

To confirm the role of p130Cas, we introduced p130Cas shRNA or the vector shRNA into the neural tube by electroporation. When the vector shRNA was electroporated into the neural tube together with Venus YFP, commissural axons turned toward netrin-1 (Fig. 7b,i), whereas p130Cas shRNA cotransfected with Venus YFP significantly inhibited axon turning toward netrin-1 (Fig. 7d,i). Axon turning toward netrin was also inhibited by p130Cas siRNA (Fig. 7e,f,i). The effect of p130Cas siRNA on commissural axon turning could be rescued by the overexpression of wild-type p130Cas (Fig. 7g,h,i), indicating that the effect was specifically a result of p130Cas knockdown. Immunohistochemistry with the anti-axonin-1 antibody recognizing commissural axons revealed that only commissural axons transfected with p130Cas RNAi did not turn toward netrin, whereas untransfected axons were still attracted by netrin-1 (supplemental Fig. 3, available at www.jneurosci.org as supplemental material).

To test whether p130Cas knockdown by shRNA and siRNA caused the commissural axons to lose the turning ability, rather than only losing netrin responsiveness, we used the open-book preparation to assay for axon turning by the roof plate (supplemental Fig. 4a, available at www.jneurosci.org as supplemental material). As reported previously (Augsburger et al., 1999), the roof plate repelled the commissural axons (supplemental Fig. 4b,c, available at www.jneurosci.org as supplemental material). The repulsive response of commissural axons was not inhibited by p130Cas shRNA or siRNA (supplemental Fig. 4, available at www.jneurosci.org as supplemental material). Thus, results from both the p130Cas (F15) mutant and the p130Cas RNAi demonstrate a requirement of p130Cas in axon attraction by netrin-1.

p130Cas is involved in commissural axon projection in vivo

Experiments discussed above have shown that p130Cas plays an important role in netrin signaling and netrin function in vitro. To determine the in vivo functional role of p130Cas, we examined the phenotype of p130Cas (F15) mutant and p130Cas RNAi on commissural axon projection in the chick embryos.

Venus YFP was introduced by electroporation together with a control vector, or with the p130Cas (F15) mutant into the neural tube of stage 12 chick embryos. Embryos were allowed to develop until stage 23 when they were killed and the lumbosacral segments of the spinal cord were isolated. The open-book preparation was made and immunostained with the anti-axonin-1 antibody, which recognized the commissural axons (Stoeckli et al., 1997). More than 90% of axons expressing Venus YFP were marked commissural axons (Fig. 8a). To examine the phenotype of p130Cas (F15) mutant and p130Cas RNAi, we used the open-book preparation to assay for axon turning by the roof plate (supplemental Fig. 4a, available at www.jneurosci.org as supplemental material). As reported previously (Augsburger et al., 1999), the roof plate repelled the commissural axons (supplemental Fig. 4b,c, available at www.jneurosci.org as supplemental material). Thus, results from both the p130Cas (F15) mutant and the p130Cas RNAi demonstrate a requirement of p130Cas in axon attraction by netrin-1.

p130Cas is involved in commissural axon projection in vivo

Experiments discussed above have shown that p130Cas plays an important role in netrin signaling and netrin function in vitro. To determine the in vivo functional role of p130Cas, we examined the phenotype of p130Cas (F15) mutant and p130Cas RNAi on commissural axon projection in the chick embryos.
hibited the projection of commissural axons (see Fig. 8h,i,j, for an example and Fig. 8k,l, for statistical analysis).

The effect of p130CAS (F15) was further confirmed with the p130CAS shRNA and siRNA (Fig. 9). Although the majority of the commissural axons in the spinal cord transfected with the control vector or Venus YFP reached the floor plate (Figs. 8b–d, 9a–c,m,n), only a small number of axons in p130CAS shRNA or siRNA transfected group reached the floor plate (Fig. 9d–l,m,n). Although the open-book preparation showed obvious defects of commissural axon projection \textit{in vivo}, it was difficult to evaluate the axon turning. To examine whether the knock-down of p130CAS disrupts the commissural axon turning in addition to inhibiting axon extension \textit{in vivo}, we cut the transverse section of chick spinal cord (stage 23) after electroporation (Fig. 10). In addition to the inhibition of axon extension, some commissural axons transfected with p130CAS shRNA or siRNA were misguided (Fig. 10c,c′), compared with control groups (Fig. 10a,a′,b,b′). Overexpression of wild-type p130CAS rescued the effects of p130CAS RNAi knock-down on commissural axon extension and turning (Figs. 9j–n, 10d,d′). The p130CAS knock-out mice are currently not available, and instead we introduced the Venus YFP construct and p130CAS shRNA into mice neural tube at E10.5 and did electroporation \textit{in vivo}. The embryos were killed at stage 12.5, and the transverse sections of spinal cords were obtained. The projection of some commissural axons was decreased and misguided in RNAi group (Fig. 10g,g′) compared with the Venus YFP group (Fig. 10c,c′) and vector group (Fig. 10f,f′). These results indicate p130CAS is involved in the projection and pathfinding of commissural axons \textit{in vivo}.

Discussion

Our results indicate p130CAS is an important component in the netrin signaling pathway acting between tyrosine kinases and the small GTPase, and p130CAS is essential for commissural axon guidance.

Previous studies have shown the involvement of multiple molecules in netrin signaling, but it was not clear whether they represent different pathways or whether they converge. For example, although the cytoplasmic tyrosine kinases Fyn and FAK (Li et al., 2004; Liu et al., 2004; Meriane et al., 2004; Ren et al., 2004) and the small GTPases Rac1 and Cdc42 (Li et al., 2002; Shekarabi and Kennedy, 2002; Shekarabi et al., 2005) are the most extensively studied molecules in netrin signaling, their relationship was unknown. Results shown here demonstrate that p130CAS is downstream of Fyn and FAK and upstream of Rac1 and Cdc42.

Our results show that p130CAS is expressed in the commissural axons in the embryonic spinal cord and colocalized with DCC. We have several pieces of biochemical evidence that place p130CAS in the netrin signal transduction pathway. In both primary neurons and HEK cells, netrin can stimulate tyrosine phosphorylation of p130CAS (Figs. 2, 3). Netrin also stimulates the formation of a protein–protein interaction complex with Fyn and FAK (Fig. 2d). Netrin stimulation of p130CAS phosphorylation requires DCC (Fig. 2d,h,i). p130CAS is downstream of FAK and Src family kinases, because the inhibition of FAK and Src kinases decreases netrin-induced p130CAS phosphorylation (Fig. 3a,b), which is consistent with the finding that the same domains in DCC required for FAK phosphorylation (Li et al., 2004; Ren et al., 2004) are required for netrin-induced phosphorylation of p130CAS (Fig. 2h,i). Unlike the relationship between the Src kinases and FAK, which are mutually dependent on each other (Li et al., 2004; Liu et al., 2004; Ren et al., 2004), p130CAS is not required for netrin-induced phosphorylation of FAK and Fyn, because dominant-negative mutants of p130CAS could not inhibit the phosphorylation of FAK and Fyn (Fig. 3c–e), and netrin-
induced phosphorylation of FAK could not be blocked by eliminating p130CAS (Fig. 3f). Therefore, p130CAS is clearly downstream of FAK and Src kinases in the netrin pathway.

The Rho family of small GTPases plays important roles in growth cone motility and axon guidance. Netrin can stimulate both Rac1 and Cdc42, and netrin function requires both of them (Li et al., 2002; Shekarabi and Kennedy, 2002; Shekarabi et al., 2005). Our results show that inhibition of p130CAS blocks netrin-1-induced activation of Rac1 and Cdc42 (Fig. 4), indicating that and in vivo assay, we also show that both the dominant-negative p130CAS neurite outgrowth induced by netrin-1 (Fig. 5). Using the turning assay, because p130CAS cannot directly activate Rac1 and Cdc42, it will be interesting to identify the molecule that links p130CAS to Rac1 and Cdc42. Similarly, there are no studies linking any of the other components previously implicated in netrin signaling such as cyclic nucleotides, PLC, PI3K, MAP kinases, or calcium.

The functional roles of p130CAS were studied by both in vitro and in vivo experiments. Netrin-1 can stimulate the growth of neurites from cortical neurons. The p130CAS RNAi inhibited neurite outgrowth induced by netrin-1 (Fig. 5). Using the turning assay, we also show that both the dominant-negative p130CAS mutant F15 and p130CAS RNAi inhibited axon attraction by netrin-1 (Figs. 6, 7). These results indicate that p130CAS is required for netrin function. In vivo studies with chick and mouse spinal cords show that F15 and p130CAS RNAi cause failure of commissural axons to reach the floor plate (Figs. 8, 9). When either netrin or DCC is defective in mice (Serafini et al., 1996; Fazeli et al., 1997), the projection of commissural axons is also defective. However, other cues have also been implicated in commissural axon guidance. Bone morphogenetic proteins contribute as a repellent to the initial guidance of commissural axons in a ventral direction (Augburger et al., 1999). Sonic hedgehog has been thought to be an attractant made in the floor plate for the commissural axons. Our result from the open-book turning assay suggests that p130CAS is not involved in mediating the repulsive response of commissural axons to the roof plate (supplemental Fig. 4, available at www.jneurosci.org as supplemental material). However, it remains to be determined whether p130CAS is involved in the downstream signaling pathway(s) of other guidance cues.

References

