Immunotherapy for cancer in the central nervous system: Current and future directions

David C. Bindera,b, Andrew A. Davisc, and Derek A. Wainwrightd

aCommittee on Cancer Biology; bDepartment of Pathology, The University of Chicago, Chicago, IL USA; cDepartment of Medicine; dDepartment of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL USA

\textbf{ABSTRACT}

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and still remains incurable. Although immunotherapeutic vaccination against GBM has demonstrated immune-stimulating activity with some promising survival benefits, tumor relapse is common, highlighting the need for additional and/or combinatorial approaches. Recently, antibodies targeting immune checkpoints were demonstrated to generate impressive clinical responses against advanced melanoma and other malignancies, in addition to showing potential for enhancing vaccination and radiotherapy (RT). Here, we summarize the current knowledge of central nervous system (CNS) immunosuppression, evaluate past and current immunotherapeutic trials and discuss promising future immunotherapeutic directions to treat CNS-localized malignancies.

\textbf{Introduction}

Glioma is the most common primary malignant brain tumor, accounting for nearly 80% of cases in adults. Glial-derived tumors are classified based on histologic subtype, which include glial fibrillary acidic protein positive (GFAP+) astrocytic tumors, oligodendrogliomas, ependymomas and a mixture of the subtypes.1 Of these, astrocytic glioma grade IV, otherwise referred to as GBM, is the most common and deadly subtype with a median survival of 14.6 mo post-diagnosis and an average 5-year survival rate of less than 5%.2,3 Current treatments that combine resection, RT and chemotherapy are unable to prevent tumor recurrence based on residual disease originating from the invading margins/inoperable surgical bed. Despite previous translational efforts that include new approaches for gene therapy, targeted chemotherapeutics and/or radiotherapeutic modalities, the standard of care for newly diagnosed GBM has remained unchanged for the past 10 y, highlighting the need for better treatment options. Also, there is no standard of care treatment for patients with recurrent GBM. The prevalence of metastatic tumors in the CNS greatly exceeds the number of GBM cases, yet, overall survival (OS) is similarly dismal. In this review, we discuss historical efforts, as well as new and/or expanded approaches that include vaccination, immune checkpoint blockade, adoptive T cell transfer, as well as combinatorial immunotherapy for the rationale design to durably control aggressive tumors in the CNS.

\textbf{CNS tumors and Immunosuppression}

The CNS was originally considered to be an immune-privileged site, in part, based on the superior growth of rat osteosarcoma cells that were intracranially injected into the brain compared to growth subcutaneously or intramuscularly.4 More recent observations indicate that the CNS is immunospecialized, based on the considerable interaction with the peripheral nervous system and the non-parenchymal ventricles, meninges and subarachnoid space.5 Inflammatory stimuli, including those induced by brain tumors, increase CNS immunogenicity due to microglial activation and blood–brain barrier (BBB) disruption.6 The latter occurs secondary to glioma cell invasion of the basement membrane.7,8 BBB disruption facilitates the drainage and presentation of CNS antigens to the cervical lymph nodes, which primes T cells for homing and infiltration to the tumor parenchyma. Interestingly, the pattern of leukocyte infiltration into GBM is not identical among tumors, with specific genetic subtypes including the mesenchymal profile, possessing higher levels of T cell infiltration.9 Coincidently, the mesenchymal subtype is almost universally observed in recurrent GBM after standard of care therapy.10 Commensurate to the inflammatory signals (i.e. cytokines, chemokines, growth factors) that brain tumors induce, are potently immunosuppressive mechanisms that include the tryptophan catabolic enzyme, indoleamine 2,3 dioxygenase 1 (IDO1). This rate-limiting enzyme is expressed in 96% of resected glioblastoma, with the upregulation correlating with a worse patient prognosis.11,12 IDO1 converts tryptophan into kynurenines, with the latter catabolite mediating inhibition/induction of apoptosis in effector T cells and/or amplification of immunosuppression by CD4+CD25+FoxP3+ regulatory T cells (Treg) (Fig. 1).13 Preclinically, tumor-derived IDO1 is essential for Treg accumulation and immunosuppression, since malignant brain tumors deficient for the enzyme result in spontaneous rejection mediated by a T-cell-dependent mechanism.12 Paradoxically, Treg incidence in newly diagnosed patient GBM is a neutral prognostic factor.14 Importantly, it...
has yet to be determined whether this finding holds true in recurrent GBM and this may be an important clinical consideration since our laboratory has experimental evidence from a model of spontaneously forming glioma suggesting that IDO1 functions differently in brain tumors depending on the newly diagnosed vs. recurrent context (unpublished observation). An
alternative immunosuppressive pathway that contributes to T cell dysfunction is mediated by interactions between PD-1 and PD-L1, resulting in the loss of T cell effector function. Notably, both human GBM and tumor-infiltrating macrophages express high levels of PD-L1, suggesting the need for multi-cellular targeting for optimal immunotherapeutic benefit. Similar to other malignancies, cytotoxic T cells infiltrating GBM express high levels of PD-1. A third dominant and critical immunosuppressive pathway relevant to brain tumors is mediated by CTLA-4, which simultaneously inhibits effector T cell activation/proliferation and Treg activation/function in GBM. Interestingly, the interaction of CTLA-4 with dendritic cell (DC)-expressed B7, induces IDO1 expression. Thus, it will be interesting to determine whether co-inhibiting CTLA-4 and IDO1 lacks an additive/synergistic impact against brain tumors or if other undiscovered immunosuppressive mechanisms remain independent of the interaction.

Therapeutic approaches

Vaccination

Therapeutic vaccination against cancer induces and/or rescues unproductive immune responses against tumor antigens intrinsically expressed or cross-presented by stromal cells. This immunity can be generated against mutated peptides, or post-translational modifications. To generate/rescue functional antitumor T cell responses, vaccines co-administer tumor peptide(s) and immuno-stimulatory adjuvant(s) to license DC for activating and expanding tumor-reactive T cells. Determining the optimal peptide(s) for targeting is a challenging task since many tumor-associated antigens are identified as "self" by the immune system. Given the shared neuroectodermal lineage of astrocytes and melanocytes, there is relatively significant overlap of shared tumor associated antigens between GBM and melanoma. This complicates targeting GBM with high specificity given the obvious potential for immunization against normal melanocytes. In practice, however, this phenomenon has not been observed in the majority of previously vaccinated GBM patients. Notably, ex vivo loading of a newly diagnosed GBM patient’s DC with six GBM tumor-associated peptides can generate vaccine-specific immune responses that are not associated with an OS advantage. By vaccinating GBM patients with DC loaded with glioma-associated peptides combined with adjuvant poly-ICLC, approximately 60% of patients demonstrate glioma-associated immune responses, with <10% of recurrent glioma patients demonstrating stable tumor regression. Overall, these studies highlight an important concept suggesting that, stimulating an immune response against exclusively tumor-associated peptides is not sufficient for controlling malignant progression in the majority of patients.

Tumor neoantigens are considered to have higher potential for therapeutic vaccination. These neoantigens are generated during tumor evolution, often resulting in unique targets within individual patients. Some neoantigens, however, are present in a higher percentage of GBM, providing rational targets for focusing vaccination efforts against. One of the best characterized neoantigens is the epidermal growth factor receptor variant III (EGFRvIII), which is present in ~20–30% of newly diagnosed GBM, carrying an independent negative prognosis for patients who survive >1 y after diagnosis. EGFRvIII is the result of an in-frame deletion leading to a new antigenic junction, capable of inducing both cellular and humoral immunity. Rindopepimut, a 13-amino acid EGFRvIII peptide vaccine conjugated to adjuvant, is currently utilized for targeting this neoantigen. Phase II EGFRvIII peptide vaccines have demonstrated vaccine immunogenicity and increased OS, with median at approximately 24 mo from diagnosis, compared to historical controls (Table 1). Survival advantage of treated patients correlate to the magnitude of induced tumor immunity, with tumor relapse occurring with loss of EGFRvIII expression based on immunohistochemical detection. While promising, these data could also indicate that, sensitivity to EGFRvIII detection by IHC is masked by patient-derived EGFRvIII antibodies or post-translational modification(s) as well as the independent loss due to radiation and/or chemotherapy. A two-arm randomized phase III trial (ACT IV) for recently diagnosed GBM is currently underway to better assess the efficacy of this approach (NCT01480479) (Table 2). With regard to targeting neoantigens in lower-grade glioma, mutant isocitrate dehydrogenase type 1 (IDH1) is carried by more than 70% of diffuse grade II and III gliomas, and targeting IDH1 by peptide vaccination has shown efficacy.

To address tumor relapse from generation of antigenic variants in the process of targeting a single peptide, alternative vaccine approaches have been created to target a broad range of antigens, simultaneously. One exciting approach utilizes heat shock protein (HSP) peptide complexes (HSPPC-96) derived from a GBM patient’s resected tumor. Intracellular HSP physiologically binds peptides with extracellular HSP capable of mediating the internalization of HSPPC-96 into APCs for efficient MHC-I and MHC-II presentation of tumor peptides. Clinically, HSPC-96 vaccine generates a tumor-reactive T cell response. In a phase II, single arm trial for surgically resectable recurrent GBM, HSPC-96 vaccine increased the median OS to an impressive 42.6 weeks, which provides a substantial survival benefit when compared to historical controls. Interestingly, a predictor of poor response to vaccination was lymphopenia at the time of vaccination, a side effect likely attributable to previous chemotherapy, radiation and/or decitabron administration. An alternative approach to targeting multiple epitopes, simultaneously, is utilizing pulsed autologous DC with tumor lysate. This approach, identified as DCVax-L, is currently in a Phase III trial for patients with newly-diagnosed GBM (NCT00045968).

Over the past 3 y, technological advances and clinical discoveries have sparked the development of next-generation vaccines. The first observation from both preclinical subcutaneous fibrosarcoma and clinical melanoma studies demonstrated that CD8 T cells responsible for eradicating tumors must recognize tumor-specific peptides that have high affinity for MHC-I. In preclinical subcutaneous fibrosarcomas, peptide affinity determines whether a peptide can be cross-presented by tumor-associated macrophages and thereby serve to optimally stimulate T cells to produce high levels of cytokine in the tumor microenvironment. Recent technological advances now facilitate these "rejection" antigens to be reliably identified using (i) genome-wide exomic sequencing to find mutations and (ii) peptide affinity algorithms to identify peptides with high
Table 1. Completed clinical trials of immunotherapy for glioma.

<table>
<thead>
<tr>
<th>Trial Name</th>
<th>Phase</th>
<th>Sample Size/Type of Glioma</th>
<th>New/Recurrent</th>
<th>Therapeutic Modality</th>
<th>Primary and Secondary Endpoints</th>
<th>Result/Outcomes</th>
<th>Clinical Trial ID/Reference Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dendritic cell (DC) vaccines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy</td>
<td>Pilot</td>
<td>10</td>
<td>New</td>
<td>DC vaccine</td>
<td>PFS and OS</td>
<td>PFS: 9.5 mo OS: 28 mo</td>
<td>94</td>
</tr>
<tr>
<td>Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study</td>
<td>Pilot</td>
<td>8 (7 completed)</td>
<td>New</td>
<td>DC vaccine</td>
<td>PFS and OS</td>
<td>PFS at 6 mo: 75%, OS: 24 mo</td>
<td>95</td>
</tr>
<tr>
<td>Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dendritic cell vaccination in glioblastoma after fluorescence-guided resection</td>
<td>Pilot</td>
<td>5</td>
<td>New</td>
<td>DC vaccine</td>
<td>PFS and OS</td>
<td>PFS: 16.1 mo OS: 27.4 mo</td>
<td>97</td>
</tr>
<tr>
<td>α-type-1 polarized dendritic cell-based vaccination in recurrent high-grade glioma: a phase I clinical trial</td>
<td>I</td>
<td>9 (7 with GBM, 2 with WHO grade III) with HLA-A2 or A24 genotype</td>
<td>Recurrent</td>
<td>DC vaccine</td>
<td>SD and PD</td>
<td>1 SD (11%), 8 PD (89%)</td>
<td>98</td>
</tr>
<tr>
<td>Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma</td>
<td>I</td>
<td>21 (17 new GBM, 3 recurrent GBM, 1 brainstem glioma)</td>
<td>New + Recurrent</td>
<td>multi-epitope-pulsed DC vaccine</td>
<td>PFS and OS</td>
<td>newly diagnosed: PFS: 16.9 mo OS: 38.4 mo</td>
<td>99</td>
</tr>
<tr>
<td>Dendritic cell vaccination combined with temozolomide retreatment: results of a phase I trial in patients with recurrent glioblastoma multiforme</td>
<td>I</td>
<td>14 (9 completed initial phase, 3 yield of DC vaccine was too low)</td>
<td>Recurrent</td>
<td>DC vaccine with pulsed autologous tumor cells previously exposed to TMZ in vivo + TMZ</td>
<td>OR and PFS</td>
<td>2 with OR 22% with 6-mo PFS</td>
<td></td>
</tr>
<tr>
<td>Gene expression profile correlates with T cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy</td>
<td>I</td>
<td>23</td>
<td>New + Recurrent</td>
<td>DC vaccine + toll-like receptor agonists (imiquimod or poly-ICLC)</td>
<td>OS and survival rate</td>
<td>OS: 31.4 mo survival rates: 1 y (92%), 2 y (55%), 3 y (47%)</td>
<td>NCT00068510 9</td>
</tr>
<tr>
<td>A phase I/II clinical trial investigating the adverse and therapeutic effects of a postoperative autologous dendritic cell tumor vaccine in patients with malignant glioma</td>
<td>I/II</td>
<td>17 (16 GBM, 1 WHO grade III)</td>
<td>New + Recurrent</td>
<td>DC vaccine</td>
<td>OS and survival rate</td>
<td>OS: 525 d, 5-y survival 18.8%</td>
<td>100</td>
</tr>
<tr>
<td>Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with α-type1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma</td>
<td>I/II</td>
<td>22 (13 GBM, 5 anaplastic astrocytoma, 3 anaplastic oligodendroglia, 1 anaplastic oligoastrocytoma). All with HLA-A2 genotype</td>
<td>Recurrent</td>
<td>α-type 1 polarized DC with synthetic peptides for glioma-associated antigen epitopes + poly-ICLC</td>
<td>immune response and PFS</td>
<td>58% with positive immune response to at least one glioma-associated antigen, 9 (41%) with PFS at least 12 mo</td>
<td>27</td>
</tr>
<tr>
<td>Adjuvant immunotherapy with whole-cell lysate dendritic cells vaccine for glioblastoma multiforme: a phase II clinical trial</td>
<td>II</td>
<td>Randomized: 18 experimental vs. 16 control</td>
<td>New</td>
<td>DC vaccine + surgery + RT + chemo vs. surgery + RT + chemo</td>
<td>PFS, OS, and survival rates</td>
<td>PFS: 8.5 mo vaccine vs. 8.0 mo control (p = 0.075), OS: 31.9 mo vaccine vs. 15.0 mo control (p < 0.002), survival rates 1 y (88.9%), 2 y (44.4%), 3 y (16.7%) vaccine vs. one y (75.0%), 2 y (18.8%), and 3 y (0%) control</td>
<td>101</td>
</tr>
</tbody>
</table>

(Continued)
<table>
<thead>
<tr>
<th>Trial Name</th>
<th>Phase</th>
<th>Sample Size/Type of Glioma</th>
<th>New/Recurrent</th>
<th>Therapeutic Modality</th>
<th>Primary and Secondary Endpoints</th>
<th>Result/Outcomes</th>
<th>Clinical Trial ID/Reference Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>EGFRvIII vaccines</td>
<td>Pilot</td>
<td>Randomized: 3 experimental vs. 3 control</td>
<td>New</td>
<td>EGFRvIII peptide vaccine + daclizumab (anti-IL-2Rα MAb) vs. vaccine + saline</td>
<td>Time to progression (TTP) and OS</td>
<td>TTP from vaccination: 6.8 mo, OS: 22.8 mo</td>
<td>NCT00626015.102</td>
</tr>
<tr>
<td>A pilot study of IL-2Rα blockade during lymphopenia depletes regulatory T-cells and correlates with enhanced immunity in patients with glioblastoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme</td>
<td>I</td>
<td>12</td>
<td>New</td>
<td>DC vaccine targeting EGFRvIII antigen</td>
<td>PFS, OS, and immune response</td>
<td>6-mo PFS was 67% after vaccination and 94% after diagnosis. OS: 26.0 mo, significantly longer than matched cohort (p < 0.0013). Development of specific antibody (p < 0.025) or delayed-type hypersensitivity (p < 0.03) had significant effect on OS</td>
<td>103</td>
</tr>
<tr>
<td>Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma</td>
<td>II</td>
<td>18</td>
<td>New</td>
<td>EGFRvIII peptide vaccine</td>
<td>PFS, OS, and immune response</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma</td>
<td>II</td>
<td>22</td>
<td>New</td>
<td>EGFRvIII peptide vaccine with either standard-dose or dose-intensified (DI) TMZ</td>
<td>PFS, OS, and immune response</td>
<td>PFS 15.2 mo OS 23.6 mo Both humoral and cellular vaccine-induced immune responses are enhanced by DI TMZ PFS at 5.3 mo was 66% (approximately 8.5 mo from diagnosis). OS: 21.8 mo. 36-mo OS was 26%</td>
<td>34</td>
</tr>
<tr>
<td>Heat-shock protein (HSP) vaccines</td>
<td>Pilot</td>
<td>Study of intratumoral injection of recombinant heat shock protein 70 in the treatment of malignant brain tumors in children</td>
<td>Pilot</td>
<td>HSP 70 vaccine</td>
<td>CR and PR</td>
<td>1 CR (8%) 1 PR (8%)</td>
<td>104</td>
</tr>
<tr>
<td>A phase II, multi-center trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study</td>
<td>II</td>
<td>65</td>
<td>New</td>
<td>Rindopepimut (CDX-110)</td>
<td>PFS and OS</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td>Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial</td>
<td>II</td>
<td>Recurrent</td>
<td>41</td>
<td>HSPPC-96 vaccine</td>
<td>OS and survival rate</td>
<td>OS: 42.6 weeks 90.2% alive at 6 mo 29.3% alive at 12 mo 66% lymphopenic prior to therapy leading to decrease OS</td>
<td>25</td>
</tr>
<tr>
<td>Other peptide vaccines</td>
<td>I</td>
<td>7</td>
<td>New</td>
<td>Wilms tumor 1 peptide vaccination</td>
<td>PFS</td>
<td>All patients still alive at time of study publication. PFS: 5.2–49.1 mo</td>
<td>105</td>
</tr>
</tbody>
</table>

(Continued)
peptide–MHC affinity. This approach has been validated preclinically demonstrating that, vaccinating against a model “rejection peptide” achieves tumor destruction of aggressive melanoma. Creating personalized vaccines to target these predicted rejection antigens is now recognized as a promising approach against non-CNS tumors and should be studied with regard to whether similar efficacy is achievable against aggressive tumors in the CNS.

Checkpoint blockade

Over the past 15–20 y, it has become recognized that inhibitory receptors on T cells play an important role in suppressing T-cell-mediated antitumor responses. These inhibitory receptors are referred to as immune checkpoints due to their role in preventing inappropriate/prolonged activation. To date, the checkpoints that have been targeted with the most impressive clinical antitumor responses are CTLA-4 and PD-1. During CD8+ T cell activation, CTLA-4 is upregulated and inhibits further T cell activation and proliferation. CTLA-4 is also expressed on CD4+ T cells where it functions to enhance Treg-mediated immunosuppression. Ipilimumab, a humanized CTLA-4 antibody, was the first FDA-approved immune checkpoint inhibitor. Much clinical experience with ipilimumab has been in...
<table>
<thead>
<tr>
<th>Trial Name</th>
<th>Phase</th>
<th>Target accrual</th>
<th>Location</th>
<th>Therapeutic Modality</th>
<th>Primary and Secondary Endpoints</th>
<th>Clinical Trial Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC vaccine Study of a drug [DCVax®-L] to treat newly diagnosed GBM brain cancer</td>
<td>III</td>
<td>300</td>
<td>Multi-center</td>
<td>New DCVax®-L (DC vaccine)</td>
<td>OS, PFS</td>
<td>NCT00045968</td>
</tr>
<tr>
<td>Heat-shock protein (HSP) vaccine A Phase II Randomized Trial Comparing the Efficacy of Heat Shock Protein-Peptide Complex-96 (HSPPC-96) (NSC #725085, ALLIANCE IND # 15380) Vaccine Given With Bevacizumab vs. Bevacizumab Alone in the Treatment of Surgically Resectable Recurrent Glioblastoma Multiforme (GBM)</td>
<td>II</td>
<td>222</td>
<td>Northwestern University</td>
<td>Recurrent HSPPC-96 + Bevacizumab vs. Bevacizumab</td>
<td>OS, PFS, adverse events</td>
<td>NCT01814813</td>
</tr>
<tr>
<td>STAT3 inhibitor A Phase I Trial of WP1066 in Patients With Central Nervous System (CNS) Melanoma and Recurrent Glioblastoma Multiforme (GBM)</td>
<td>I</td>
<td>21</td>
<td>M.D. Anderson</td>
<td>Recurrent WP1066</td>
<td>maximum tolerated dose (MTD), dose-limiting toxicity (DLT)</td>
<td>NCT01904123</td>
</tr>
<tr>
<td>Immune checkpoint blockade Phase I Study of Ipilimumab, Nivolumab, and the Combination in Patients With Newly Diagnosed Glioblastoma</td>
<td>I</td>
<td>42</td>
<td>NRG Oncology (PA)</td>
<td>New Ipilimumab and/or Nivolumab + TMZ</td>
<td>immune-related DLTs, adverse events, biomarker analysis of immune cells, survival rate PFS, MTD, safety, tolerability, OS, overall radiographic response</td>
<td>NCT02311920</td>
</tr>
<tr>
<td>Phase II Study of Pembrolizumab (MK-3475) With and Without Bevacizumab for Recurrent Glioblastoma</td>
<td>II</td>
<td>79</td>
<td>Dana-Farber Cancer Institute, Massachusetts General Hospital</td>
<td>Recurrent Pembrolizumab +/- Bevacizumab</td>
<td>OS, PFS, adverse events, ORR, pharmacokinetic profile, quality of life safety, tolerability, OS, PFS, ORR</td>
<td>NCT02336165</td>
</tr>
<tr>
<td>Phase 2 Study to Evaluate the Clinical Efficacy and Safety of MEDI4736 in Patients With Glioblastoma (GBM)</td>
<td>II</td>
<td>84</td>
<td>Multi-center</td>
<td>New + Recurrent MEDI4736 +/- Bevacizumab</td>
<td>OS, PFS, adverse events, ORR, pharmacokinetic profile, quality of life safety, tolerability, OS, PFS, ORR</td>
<td>NCT02017717</td>
</tr>
<tr>
<td>A Randomized Phase 3 Open Label Study of Nivolumab vs. Bevacizumab and Multiple Phase 1 Safety Cohorts of Nivolumab or Nivolumab in Combination With Ipilimumab Across Different Lines of Glioblastoma</td>
<td>III</td>
<td>440</td>
<td>Multi-center</td>
<td>Recurrent Nivolumab, Nivolumab + Ipilimumab, Bevacizumab</td>
<td>OS, PFS, adverse events, ORR, pharmacokinetic profile, quality of life safety, tolerability, OS, PFS, ORR</td>
<td>NCT02017717</td>
</tr>
<tr>
<td>Adoptive T cells Pilot Study of Autologous T Cells Redirected to EGFRvIII- With a Chimeric Antigen Receptor in Patients With EGFRvIII+ Glioblastoma</td>
<td>I</td>
<td>12</td>
<td>University of Pennsylvania, UCSF</td>
<td>New + Recurrent CAR T cells to EGFRvIII</td>
<td>number of adverse events</td>
<td>NCT02209376</td>
</tr>
<tr>
<td>Evaluation of Recovery From Drug-Induced Lymphopenia Using Cytomegalovirus-specific T cell Adoptive Transfer</td>
<td>I</td>
<td>12</td>
<td>Duke University</td>
<td>New CMV-autologous lymphocyte transfer</td>
<td>T cell response, safety</td>
<td>NCT00693095</td>
</tr>
<tr>
<td>Administration of HER2 Chimeric Antigen Receptor Expressing CMV-Specific Cytotoxic T Cells In Patients With Glioblastoma Multiforme (HERT-GBM)</td>
<td>I</td>
<td>16</td>
<td>Baylor College of Medicine</td>
<td>Recurrent CMV-specific Cytotoxic T Lymphocytes</td>
<td>DLT, safety with increasing doses, tumor size</td>
<td>NCT01109095</td>
</tr>
</tbody>
</table>

(Continued)
treating metastatic melanoma, in which there is an approximately 2% complete response rate that remains durable. Responses have been observed against both non-CNS and CNS-infiltrated melanoma metastases. Preclinically, mice bearing intracranial glioma and treated with CTLA-4 mAb (clone 9H10) develop robust antitumor immunity without affecting Treg function. Clinically, the administration of ipilimumab for GBM has been limited to a small number of GBM patients in the recurrent setting.

More recently, efforts aimed at inhibiting the PD-1/PD-L1 pathway have generated significant interest. Tumor-infiltrating lymphocytes express high levels of PD-1 in most cancers, including GBM, as a result of chronic antigen stimulation by the tumor. When PD-1-expressing T cells interact with PD-L1, T cell effector function is inhibited. PD-L1 is upregulated in GBM through the following mechanisms: (i) oncogenic signaling as a result of PTEN loss, (ii) paracrine signaling, and/or (iii) “adaptive immune resistance” whereby T-cell-secreted IFNγ induces PD-L1 expression on neighboring cells. While clinical trials studying PD-1 and PD-L1 blockade are currently recruiting patients for GBM (NCT02337491, NCT02336165), the effectiveness of this approach has been characterized in treating refractory melanoma, providing an objective response rate (ORR) of approximately 15–30% as monotherapy with complete responses.
restricted to <6% of patients.52,53 Since PD-1/PD-L1 does not induce T cell infiltration into tumors, but rather rescues/prevents T cell anergy, it is not surprising that patients associated with the best responses possess higher tumor-infiltrating T cell levels prior to treatment that is co-localized with PD-L1 expression.54

The most promising outcomes related to immune checkpoint inhibition have been achieved through combinatorial CTLA-4/PD-L1 blockade,55-57 which is consistent with these pathways providing non-redundant T cell inhibition. In a recent randomized control trial for untreated advanced melanoma, dual CTLA-4 and PD-1 blockade provided an improved ORR (58%) compared to monotherapy CTLA-4 (19%) and monotherapy PD-1 (44%).57 Interestingly, dual CTLA-4 and PD-1 blockade was found to be superior compared to PD-1 monotherapy in treating PD-L1-negative tumors, but not PD-L1-positive tumors, suggesting that CTLA-4 blockade induces T cell infiltration into tumors.57

Consistent with these findings in melanoma, preclinical models of GBM demonstrate high rates of survival when treated with simultaneous PD-L1 and CTLA-4 blockade, as compared to the respective monotherapies.58 Clinically, trials aimed at GBM patient treatment with ipilimumab and nivolumab (humanized PD-1 mAb) are already underway (NCT02311920, NCT02017717). In addition, several clinical trials enrolling patients with brain metastasis are also in progress, including studies using PD-1 mAb alone and CTLA-4 combined with PD-1 mAb (NCT02374242, NCT02320058).

In addition to PD-1 and CTLA-4, therapeutic modulation of other immune inhibitory and stimulatory pathways is currently being evaluated preclinically and in early-phase trials (Table S1). Blocking inhibitory receptors LAG-3 or TIM-3 in combination with PD-1 blockade provides impressive preclinical tumor control in non-CNS tumor models.59,60 Dual LAG-3 and PD-1 blockade is currently being tested against multiple non-CNS solid tumors in a Phase I trial (NCT01968109). Modulating both inhibitory and stimulatory immune pathways may also be a promising approach as dual CTLA-4 blockade and ICOS stimulation provides improved antitumor control against preclinical murine melanoma and prostate cancer.61 This strategy may also be effective in GBM, as triple therapy with RT combined with CTLA-4 inhibition and 41BB stimulation provides improved tumor control compared to each dual therapy.62

Adoptive T cell therapy

Previously described therapeutic approaches endeavor to rescue or induce endogenous T cell responses, while adoptive T cell therapy provides an alternative strategy that involves expanding tumor-specific autologous T cells, ex vivo, followed by venous infusion into the same individual. Tumor-reactive T cells are isolated from (i) peripheral blood, (ii) surgically resected tissue or (iii) generated by transduction of the patient’s autologous T cells with vectors encoding T cell receptors (TCR) or chimeric antibody receptors (CAR).63 The capacity of adoptive T cell therapy to eradicate a large established tumor burden has been demonstrated with the re-infusion of tumor-infiltrating lymphocytes specific to melanoma,64 as well as CAR-based treatment for CD19+ B-cell malignancies.65

In GBM patients, adoptive T cell therapy has been used to target human cytomegalovirus (CMV) antigens expressed by tumor cells.66-68 A recent study treating 11 recurrent GBM patients with infusions of autologous adoptively transferred CMV-specific T cells led to a median OS of >57 weeks, with four patients remaining progression-free throughout the study period.69 Longer progression-free survival (PFS) was associated with decreased expression of checkpoint receptors on T cells suggesting that, maintaining effector function of adoptively transferred T cells is required for a durable clinical response.67 A clinical trial investigating CMV adoptive T cell therapy is ongoing (NCT00693095).

Utilizing CAR T cell adoptive therapy for GBM patients is a logical ‘next step’ for autologous therapy. CAR consist of an extracellular antibody domain fused to a T cell cytoplasmic signaling domain. Preclinical glioma CAR studies targeting HER2 and the previously described EGFRvIII reported impressive results.69,70 Clinical trials targeting both antigens are ongoing (NCT02209376, NCT01109095, NCT01454596), as well as a CAR trial targeting IL13Rα2 (NCT02208362). Future studies should focus on identifying additional tumor-specific antigenic targets shared among patients and/or developing an approach to personalize CAR technology to each patient’s tumor antigen profile.

Combination approaches

Optimal immunotherapy approaches must provide immune activation while, simultaneously, countering inhibitory checkpoint blockade signals. Moreover, it is now recognized that single modality immunotherapy has limitations that can be overcome by multi-targeted strategies. Some of the promising immunotherapeutic combinations will be further discussed.

Radiation, DNA sensors and immune checkpoint blockade

Combining ablative radiation with immune checkpoint blockade is a promising immunotherapeutic combination. While radiation was previously viewed as immunosuppressive, preclinical tumor models have demonstrated that hypofractionated ablative radiation can generate tumor regression that is T cell dependent.71 The mechanism accounting for this effect likely relies on: (i) radiation-induced tumor inflammation and cell death, (ii) DC that phagocytize “released” cancer cell DNA capable of activating the Stimulator of IFN genes (STING) pathway, (iii) increased type 1 IFN licensing DC that prime tumor-specific T cells and (iv) reactive T cells that home to and engage the tumor with strong effector function. The type I IFN appears to be essential for antitumor immunity, with intratumoral injection of a STING agonist significantly improving tumor control following radiation in experimental models.72 While the impact of combined radiation and STING activation has yet to be confirmed in CNS tumor models, it is notable that immune-mediated control of glioma outgrowth is dependent on STING-mediated induction of type I IFN.73,74 Accordingly, glioma patient prognosis is dictated, in part, by type I IFN single nucleotide polymorphisms (SNPs). Collectively, these findings suggest that immune-modulating approaches utilizing
a combination of RT and STING agonists may be promising to combat tumors in the CNS.

For both CNS- and non-CNS-resident tumors, combined RT and immune checkpoint blockade has demonstrated increased effectiveness when compared to RT alone. In a mouse orthotopic glioma model, combining radiation with anti-PD-1 provides an additive effect that improves OS, when compared to either therapy administered individually. As a mechanism accounting for the enhanced effectiveness of combinatorial treatment, radiation-induced inflammation results in PD-L1 upregulation on cancer cells, macrophages and DC. Similarly, combinatorial anti-CTLA-4 and RT leads to tumor control in a preclinical model of breast cancer. Notably, the latter combination has thus far yielded a less impressive impact on OS when compared to combinatorial RT and PD-(L)1 blockade. More recently, it was reported that control of preclinical melanoma is optimal when simultaneously treating with RT, anti-PD-(L)1 and anti-CTLA-4, when compared to dual therapy. Each modality induced a unique immune activating profile with RT expanding the TCR repertoire, anti-CTLA-4 inhibiting Treg function and increasing the Tc/Treg ratio and anti-PD-(L)1 preventing T cell exhaustion/dysfunction in tumors. Interestingly, RT combined with anti-CTLA-4 and anti-4-1BB induces similar antitumor activity, with the latter agonist causing direct stimulation to cytolytic T cells, resulting in an increased level of survival and T cell infiltration when compared to dual therapy.

Clinically, combining RT and checkpoint blockade was recently tested for the first time in a phase I trial. Patients received three doses of hypofractionated radiation to a single metastatic melanoma lesion followed by anti-CTLA-4 treatment. While median OS was <11 mo, local tumor control was achieved in the irradiated lesions for all 12 patients analyzed. Although CNS metastases were not targeted in this trial, local tumor control of melanoma brain metastases has been reported in a case series using both whole-brain RT (30 Gy/10 fractions) and stereotactic RT (20–24 Gy/1 fraction) for patients who received RT following a course of ipilimumab. Based on the strong promise of radiation combined with checkpoint blockade to achieve local tumor control in CNS and non-CNS tumors, future preclinical and clinical GBM studies should investigate how to optimize this approach. For melanoma brain metastases, two phase II trials combining RT approaches with ipilimumab for brain metastases are currently underway (NCT02115139, NCT02097772).

Vaccination and immune checkpoint blockade

Therapeutic vaccination may fail if the strategy does not optimally expand tumor-reactive T cells and/or vaccine-generated T cells lose effector function in the immunosuppressive tumor microenvironment. PD-1/PD-L1 interactions likely dampen vaccine responses by two mechanisms: (i) in the draining lymph node where vaccine adjuvant-induced inflammation results in PD-L1 expression on antigen-presenting cells that inhibits maximal expansion of vaccine-generated T cells, and in the tumor itself whereby "adaptive immune resistance." is generated by T cells secreting IFNγ that induces PD-L1 upregulation on neighboring cells leading to T cell anergy. Thus, combining vaccination with PD-1/PD-L1 antibody blockade is likely to provide a synergistic effect. In support of this, long-established preclinical melanomas resistant to dual PD-L1 and CTLA-4 blockade are eradicated by vaccination in approximately 33% of mice, but eradicated by vaccination combined with anti-PD-L1 in 80% of mice. In an independent preclinical study of subcutaneous tumors, vaccination combined with PD-(L)1 and CTLA-4 inhibition led to improved tumor rejection and mouse survival, when compared to dual- and monotherapeutic treatment. Clinically, the combination of peptide vaccination and PD-1 blockade is currently being evaluated in patients diagnosed with melanoma (NCT01176474). Since the majority of prior studies have been performed in non-CNS tumor models, future preclinical and clinical studies should evaluate these treatment approaches in patients with GBM.

Conclusions

GBM is a highly immunosuppressive tumor that is refractory to traditional therapies and difficult to treat based on its anatomical location. Metastatic tumors in the brain, with a prevalence of >20 :1 compared to GBM, also present much treatment challenge. Past immunotherapeutic efforts for brain tumors have predominantly focused on therapeutic vaccination that

Table 3. High priority questions for increasing immunotherapeutic efficacy against tumors in the CNS.

<table>
<thead>
<tr>
<th>Preclinical</th>
<th>Clinical</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Do inhibitors that co-target IDO1 and IDO2 provide superior efficacy when compared to monotherapy?</td>
<td>- Will GBM respond to immune checkpoint blockade?</td>
</tr>
<tr>
<td>- Will inhibitors of tryptophan catabolism complement other immunotherapies?</td>
<td>- What is the best approach for identifying patient cohorts that will benefit from immunotherapy?</td>
</tr>
<tr>
<td>- Which capacity of IDO1 is more important for immunotherapeutic efficacy: signal transduction modifier vs. tryptophan catabolism?</td>
<td>- What is the best approach for identifying patient cohorts that will benefit from immunotherapy?</td>
</tr>
<tr>
<td>- What is the best approach for further identification of ubiquitous GBM-specific neoantigens for translation into vaccine and/or adoptive T cell therapeutic approaches?</td>
<td>- What is the best approach for monitoring treatment effectiveness in GBM patients to immunotherapy (i.e. peripheral blood markers, tryptophan metabolic profiling or IHC markers in the tumor)?</td>
</tr>
<tr>
<td>- Is there an optimal vaccination approach to generate functional T cell responses and is this GBM subtype-specific (i.e. responsiveness in classical vs. mesenchymal, newly diagnosed vs. recurrent)?</td>
<td>- What is the best approach to limit brain swelling following immunotherapy? Is bevacizumab an alternative to decadron that can be easily added without defusing effectiveness?</td>
</tr>
<tr>
<td>- Do different GBM subtypes possess correlative mutational frequencies that associate with responsiveness to immunotherapy?</td>
<td>- Will survival outcomes be enhanced with combinatorial approaches (vaccine ± RT ± checkpoint blockade ± STING activation)?</td>
</tr>
</tbody>
</table>
has achieved promising immune activity and clinical responses. However, durable responses remain rare highlighting the need to further test existing promising approaches including gene therapy (supplemental text, Table S2), develop next-generation therapeutics (i.e. IDO inhibitors/STING agonists,) and test novel immunotherapeutic combinations (Table 3). Because antitumor immune responses occur in the context of inflammation, the possibility for tumor- and therapy-induced inflammation to cause additive/synergistic brain swelling and neurologic compromise must be recognized. While Decadron is routinely used to counter brain swelling, its use is restricted to low doses in immunotherapeutic trials as it is also extremely immunosuppressive. Next-generation CNS immunotherapies, if more efficacious, may carry an even higher risk for brain swelling and neurological compromise, thus identifying non-immunosuppressive anti-inflammatory approaches is important. Utilizing bevacizumab, a VEGF neutralizing antibody that secondarily decreases in immunotherapeutic trials as it is also extremely immunosuppressive. Next-generation CNS immunotherapies, if more efficacious, may carry an even higher risk for brain swelling and neurological compromise, thus identifying non-immunosuppressive anti-inflammatory approaches is important. Utilizing bevacizumab, a VEGF neutralizing antibody that secondarily decreases inflammation, is one such approach currently being explored in combination with GBM immunotherapy (NCT02336165, NCT01814813). CNS immunotherapy has a bright future in this current “golden age” of immunotherapy. Future studies should focus on providing patients with this battery of ever-evolving options, while also recognizing that CNS malignancies have unique immunosuppressive phenotypes that need to be specifically targeted.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank Mr. Michael Gallagher for his expertise in creating the illustration presented in Fig. 1.

Funding

This work was supported by the Graduate Training in Growth and Development grant T32 HD009007 (DCB), American Brain Tumor Association Discovery Grant (D.A.W.), the NIH grants F32 NS073366 (D.A.W.), K99 NS082381 (D.A.W.) and R00 NS082381 (D.A.W.), as well as the Northwestern Brain Tumor Institute.

References

27. Monach PA, Meredith SC, Siegel CT, Schreiber H. A unique tumor antigen produced by a single amino acid substitution. Immunity 1995; 2:45-59; PMID:7600302; http://dx.doi.org/10.1016/1074-7613(95)90078-0

34. Lesniak MS. Immunotherapy for glioblastoma: the devil is in the details. J Clin Oncol 2011; 29:3105; author reply -6; PMID:21709193; http://dx.doi.org/10.1200/JCO.2011.34.9019; http://dx.doi.org/10.1093/neuonc/noq1348

85. Curti A, Pandol
82. Lu H. TLR Agonists for Cancer Immunotherapy: Tipping the Balance between the Immune Stimulatory and Inhibitory Effects. Front Immunology 2014; 3:e28780; PMID:25083318; http://dx.doi.org/10.4161/imon.25083318

