
Journal of Neuro-Oncology
 

Rodent Models for Testing Therapeutic Hypotheses in Treating Brain Tumors
--Manuscript Draft--

 
Manuscript Number: NEON-D-17-00363

Full Title: Rodent Models for Testing Therapeutic Hypotheses in Treating Brain Tumors

Article Type: S.I. : Role of Radiotherapy in GBM

Keywords: syngeneic;  immunocompetent;  immunodeficient;  Glioblastoma;  glioma;  malignant;
GEM;  GEMM;  PDX;  humanized;  SGM3;  RCAS;  sleeping beauty;  luciferase;
bioluminescence

Abstract: The development and application of rodent models for preclinical evaluation of novel
therapeutics and approaches for treating brain tumors has been an area of intense
interest for decades in neuro-oncology research. Notably, these models often serve as
an important benchmarking tool for determining whether a therapeutic strategy is
appropriate for consideration as a clinical trial. Since the year 2000, when the first
genetically engineered mouse models for CNS cancer meeting was convened,
preclinical rodent models for therapeutic testing have undergone substantial evolution.
However, and even with this evolution, certain principles associated with these models
have stood the test of time and form the basis of this review. Commensurate with the
growth of rodent brain tumor modeling, some confusion can exist with respect to the
appropriateness of individual models for addressing research project goals. Here we
review the most common murine brain tumor paradigms, while directing specific
attention to their usefulness in preclinical therapeutic testing. These models include:
genetically engineered mice that spontaneously or inducibly develop brain tumors;
syngeneic rodent models in which cultured tumor cells are engrafted into the same
strain of rodent from which they were derived; and patient derived xenograft models in
which human tumor cells are engrafted in immunocompromised rodents, most often
mice. The basis for model selection from the extensive armamentarium of available
models, for use in preclinical therapeutic testing can, be distilled into a few key
considerations.

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Rodent Models for Testing Therapeutic Hypotheses in Treating Brain Tumors  

 

Derek A. Wainwright1,2,3, Dioval A.B. Remonde4, Matthew Genet1,  

Kevin Camphausen5, Jann N. Sarkaria6, and C. David James1,7 

   

 

1Department of Neurological Surgery, 2Department of Microbiology and Immunology, 3Department of 

Medicine-Hematology/Oncology, 7Department of Biochemistry and Molecular Genetics, Northwestern 

University Feinberg School of Medicine, Chicago, IL; 4Brody School of Medicine at East Carolina University; 
5Radiation Oncology Branch, National Cancer Institute, Bethesda, MD; 6Department of Radiation Oncology, 

Mayo Clinic, Rochester, MN; 

 

 

Running Title: Animal Brain Tumor Models 

 

 

Funding: D.A. Wainwright is supported by PHS grant number R00NS082381 and R01NS097851. C.D. James 

is supported by PHS grant numbers R01CA159467, R01NS080619 and R01NS095642. K. Camphausen is 

supported by PHS grant numbers ZIDBC010990, ZICBC010991, ZIASC010372 and ZIASC010373. J.N. 

Sarkaria is supported by PHS grant numbers NS77921, CA176830, CA184320 and CA108961, as well as Mayo 

Clinic 

 

Conflict of Interest Disclosure: None. 

 

 

Address correspondence to: Derek A. Wainwright, 300 E Superior Street-Tarry Bldg 2-703 Chicago, Illinois 

60611, USA. Phone: 312.503.3161; Fax: 312.503.3552; E-mail: derekwainwright@northwestern.edu 

 

OR 

 

C. David James, 300 E Superior Street-Tarry Bldg 2-710 Chicago, Illinois 60611, USA. Phone: 

312.503.3161; Fax: 312.503.3552; E-mail: Charles.james@northwestern.edu 

  

Manuscript Click here to download Manuscript 6-27-17 Rodent Models
Review.docx

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

mailto:derekwainwright@northwestern.edu
http://www.editorialmanager.com/neon/download.aspx?id=248719&guid=5141268e-01fb-4449-8412-e6d78004918a&scheme=1
http://www.editorialmanager.com/neon/download.aspx?id=248719&guid=5141268e-01fb-4449-8412-e6d78004918a&scheme=1


Abstract 

 

The development and application of rodent models for preclinical evaluation of novel therapeutics and approaches 

for treating brain tumors has been an area of intense interest for decades in neuro-oncology research. Notably, 

these models often serve as an important benchmarking tool for determining whether a therapeutic strategy is 

appropriate for consideration as a clinical trial. Since the year 2000, when the first genetically engineered mouse 

models for CNS cancer meeting was convened, preclinical rodent models for therapeutic testing have undergone 

substantial evolution. However, and even with this evolution, certain principles associated with these models have 

stood the test of time and form the basis of this review. Commensurate with the growth of rodent brain tumor 

modeling, some confusion can exist with respect to the appropriateness of individual models for addressing 

research project goals. Here we review the most common murine brain tumor paradigms, while directing specific 

attention to their usefulness in preclinical therapeutic testing. These models include: genetically engineered mice 

that spontaneously or inducibly develop brain tumors; syngeneic rodent models in which cultured tumor cells are 

engrafted into the same strain of rodent from which they were derived; and patient derived xenograft models in 

which human tumor cells are engrafted in immunocompromised rodents, most often mice. The basis for model 

selection from the extensive armamentarium of available models, for use in preclinical therapeutic testing can, be 

distilled into a few key considerations.   
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Syngeneic, immunocompetent mouse tumor engraftment models 

 

The use of rodent brain tumor cell lines, developed as a consequence of animal treatment with chemical mutagens, 

generally nitrosoureas, has a long history in neuro-oncology research. Table 1 includes commonly utilized tumor 

cell line-host combinations including 9L, F98, and RG2 cells in Fisher rats, CNS1 cells in Lewis rats, GL261 and 

CT-2A cells in C57BL6 mice, SMA-560 cells in VM/Dk mice, and 4C8 cells in B6D2F1 mice (1,2). A survey of 

the literature indicates that the GL261-C57BL6 is the most extensively used model, and in general, mouse models 

have been favored, likely due in large part to the economy of purchasing and housing mice vs. rats.  Although, in 

recent years, the neuro-oncology research community has directed more attention to the use of patient-derived 

xenograft models for therapeutic testing, the syngeneic, immunocompetent rodent models continue to serve a 

critically important role in brain tumor research, with current usage stimulated by heightened interest in preclinical 

testing of therapies that evoke an adaptive immune response against tumor. Notable therapeutic modalities of this 

type include IDO1, PD-1, PD-L1, CTLA-4, 4-1BB and/or OX-40 blockade (3-6).  

 

Genetically Engineered Mouse (GEM) Models 

 

During the 1990’s a new type of mouse model emerged for studying cancer that was based on the inactivation of 

tumor suppressor genes and/or introduction of activated oncogenes into the germline, such that the progeny of 

such genetically engineered mice would harbor genetic modifications favoring tumor development (Table 2).  

This movement caught hold early in the brain tumor research community and spawned a series of NCI-sponsored 

meetings for sharing information on the development of GEM models for CNS cancer (7). Early models were 

relatively unsophisticated with respect to the brain tumor relevance of oncogenic transgenes that promoted tumor 

formation. An example of such a model was presented by Ding et al. (8), and relies on glial fibrillary acid protein 

(GFAP) promoter to drive mutant Ras (V12Ha-ras). Despite the rarity of Ras mutations in glial tumors, this 

particular GEM has seen widespread use in brain tumor research, in large part because of its reproducible and 

consistent tumor development: symptomatic onset takes place ~ 12 weeks of age with 85% of mice presenting 

with low or high-grade astrocytoma (8). Tumors that develop in the V12Ha-ras model present with histologic and 

molecular characteristics consistent with those found in patient GBM, including mutation of TP53 and 

suppression of PTEN and CDKN2A expression, the latter of which encodes the p16 tumor suppressor. A 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



drawback to the V12Ha-ras model, and demonstrated by other GEM models, is the frequent presentation of 

multifocal tumor development, which is not typical of GBM in patients. 

 

GEM model sophistication increased rapidly during the 1990’s and early 2000’s, culminating with contemporary 

GEM possessing inducible tumor suppressor gene knockouts, oncogene knock-ins, and improved cell type-

specificity control over genetic alteration induction (9). A prime example of a contemporary GEM model is based 

on GFAP-associated conditional inactivation of the NF1 tumor suppressor gene in mice that are constitutionally 

deficient in TP53 (10). Ras pathway activation, either by deregulated upstream receptor tyrosine kinase signaling, 

Ras mutation, or NF1 tumor suppressor inactivation, has been popular in GEM modeling of glial tumors. 

However, and in contrast to models based on the expression of mutant Ras, NF1 inactivating mutations occur 

frequently in malignant gliomas from patients. Humans with mutated NF1 have an increased risk of developing 

astrocytoma, and tumors with combined NF1 and TP53 inactivating mutations frequently manifest as GBM (11). 

GEM allowing for temporal, cell-type specific inactivation of NF1, in the context of a p53 null background, 

display high penetrance for NF1 gene inactivation causing tumor formation (>92%), with tumors showing many 

of the hallmark features of human GBM (10,12). A derivative of this model, involving the inclusion of 

constitutional PTEN haploinsufficiency, increases tumor formation to 100% when NF1 is inactivated, and 

decreases tumor latency (13). 

 

The GEM models have addressed and continue to address needs associated with significant shortcomings of the 

engraftment models.  They enable the analysis of events associated with early tumor development, provide 

opportunity to study tumor evolution and are not dependent on an invasive procedure, the intracranial injection 

of tumor cells, that disrupts the blood brain barrier and alters the tumor microenvironment. GEM models also are 

able to address potential brain tumor cell of origin identity(ies). Notably, the immunocompetent status of GEM 

is compatible with testing immunotherapies (14,15). 

 

A weakness of GEM models is that they do not, in general, compare favorably with engraftment models for 

therapeutic testing capacity.  Reasons for this include the extensive resources, time and costs associated GEM 

genotyping, breeding, and colony maintenance; asynchronous tumor development in age-matched mice of the 
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same strain; and the infrequent inclusion of a reporter transgene that can be used for monitoring intracranial tumor 

growth and response to therapy (16). However, and in contrast to GEM model tumors, established cell lines 

engrafted in rodent brains possess minimal heterogeneity, angiogenic potential, and often produce tumors that 

lack critical histopathological features in corresponding patient tumors, such as necrosis (8,17). Thus, while more 

cumbersome, GEM models are critically important experimental systems for testing therapies, and especially 

those that engage the host immune system for therapeutic effect.  

 

Patient-derived Xenograft (PDX) Models 

 

Human established cell lines (ECLs), continuously propagated as monolayer cultures in serum-supplemented 

media, such as the ubiquitous U87 line, have been used for establishing tumors in immunocompromised mice for 

nearly 30 years (18), and some of the earliest established lines continue to be a staple of laboratories conducting 

preclinical therapeutic testing in rodents. An extensive review of glioma ECL tumorigenicity was published by 

Ishii et al. (19), and this work continues to serve as a valuable reference for investigators engaged in human 

glioma research.  Generally, xenografts established from ECLs are not referred to as patient-derived xenografts 

(PDX).  The term, or the acronym, PDX, is usually applied to tumors that are propagated in mice, rather than in 

cell culture.  Admittedly, however, any xenograft established from human tumor cells, regardless of method of 

tumor cell propagation, is a patient-derived xenograft. 

 

With the intriguing potential and limited understanding of GEM model strengths and weaknesses at the outset of 

the transgenic mouse movement, interest in human tumor xenograft models became significantly decreased 

during the rapid expansion period of GEM research.  However, two high impact studies prompted a resurgence 

of, and have sustained a high level of interest in brain tumor xenograft models. The first was presented by Singh 

et al. in 2004 (20), and demonstrated the existence of human tumor cell subpopulations within individual patient 

surgical specimens, having distinct tumorigenic potential in immunocompromised mice.  This landmark 

publication was followed by the study of Bao et al. (21), which showed differential sensitivity of human glioma 

cell subpopulations to radiation treatment.  The two studies, in combination, stimulated and have maintained a 

high level of interest in research directed at understanding the dynamics of intratumoral subpopulation 
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heterogeneity. Immunocompromised mice were, as well as continue to be, the tool with which to study key 

subpopulation biologic characteristics, namely successful engraftment and engrafted tumor growth rate.   

The decade of 2000-2010 also proved to be a period of time during which there were substantial changes in 

approach to propagating human tumor tissues and cells.  High resolution molecular profiling studies have clearly 

established that sustained in vitro propagation of patient tumor explant cultures, with cells grown as monolayers 

in medias supplemented with bovine sera, results in significant molecular and biologic changes to the tumor cells, 

in relation to the patient tumors from which they originated (22). Studies which emerged and that showed 

improved retention of patient tumor characteristics through direct surgical specimen engraftment and propagation 

in immunocompromised mice (23), as well as by growth and propagation of surgical specimen explant cultures 

in medias supplemented with specific amounts of defined growth factors that select for cancer  stem cells (24), 

have had substantial influence on ways in which patient tumors and cells are sustained for ongoing use in research.  

In addition to the discovery of new approaches for propagating tumor tissue and cells, there has been increased 

attention directed to the type of immunodeficient mouse host used for tumor tissue engraftment and propagation. 

The transplantation of xenogeneic tissue into mice requires neutralization and/or depletion of the adaptive immune 

response to avoid graft versus host immune-mediated tissue rejection. One of the most commonly utilized hosts 

for human tumor cell engraftment is the Foxn1-deficient nu/nu mouse strain, which is deficient for the thymus, a 

tissue required by lymphoid progenitor cells to undergo positive and negative selection that eventually produces 

naïve T cells and mature regulatory T cells (25). The preferential use of nu/nu mice in cancer research is due in-

part to historical rationale, as they were the first type of mouse to be widely available for human tumor xenograft 

establishment and propagation. Notably, they are relatively inexpensive, healthy (can survive as long as 2 years 

in an immunological barrier environment), and their lack of fur facilitates straightforward identification and 

quantification of tumors grown subcutaneously.  Despite these attributes, athymic nu/nu mice likely introduce a 

bias for successful engraftment of surgical specimens, with successful engraftment mostly restricted to highly 

malignant variants within a histologic class of tumor.  For brain tumors, this was indicated over a quarter of a 

century ago when it was shown that engrafted patient medulloblastomas frequently possess c-myc amplification 

(26). Based on contemporary molecular classification, these tumors represent a subset of group 3 
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medulloblastomas (27) and are associated with a relatively poor prognosis in patients. Similarly, molecular 

profiling of GBM xenografts, established in athymic nu/nu mice, suggests a selection bias against the neuronal 

subgroup of these tumors (28). However, with the significantly increased animal radiation sensitivity for many of 

the other immune-compromised models detailed below, athymic nu/nu mice are an important tool for pre-clinical 

testing of novel treatment regimens. 

Motivated by the need to expand tumor subtypes that can be successfully engrafted and propagated, mice with 

more severe immunodeficiency have experienced increasing use in xenograft-associated research.  Examples 

include Rag1 or Rag2 knockout mice that are unable to form mature T- and B-cells, NOD-scid mice that are 

impaired for T and B cell lymphocyte development and are variably defective in natural killer (NK) cell function, 

and the NOD-scid IL2rgnull (NSG) mice that lack mature T- and B-cells, are NK cell deficient, and are variably 

defective in macrophage and dendritic cell function (29). Potential barriers to working with severely 

immunodeficient mice is related to their high purchase price, their need for special care and housing, the increased 

incidence of immuno-proliferative responses to tissue engraftment and the presence of fur which, to an extent, 

obscures subcutaneous tumor cell engraftment. Despite these increased challenges, the more severely 

immunocompromised status of such mice has helped to create new models, such as serially transplantable IDH1-

mutant PDX (30,31), established from lower grade gliomas and do not engraft well, if at all, in athymic nu/nu 

mice.  

Choosing the most appropriate mouse host for patient tumor engraftment is a vital consideration with respect to 

successful engraftment, but as well with respect to testing therapies. Different strains of mice have inherent 

differences in chemotherapy and radiation sensitivity (32), which can be a limiting factor in the treatment 

regimen(s) that can be used in conducting anti-tumor efficacy studies. Regardless of the type of 

immunocompromised mouse one chooses, any intention for large scale engraftment-based research is well-served 

by directing special attention to comparing the costs of purchasing from a vendor vs. establishing and maintaining 

an in-house breeding colony, as the price for conducting large scale PDX research can be cost-prohibitive.   
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Another important consideration for xenograft establishment and propagation concerns anatomic location: 

intracranial (orthotopic) (33-35) vs. subcutaneous (heterotopic) (36). Whereas subcutaneous serial propagation 

of patient tumors has been demonstrated to maintain key molecular and biologic features of human brain tumors, 

as compared to propagation in vitro (23,37), the molecular and biologic characteristics of engrafted patient tumors 

diverge, to some extent, when propagating the same surgical specimen in heterotopic vs. orthotopic location. 

Orthotopic xenograft propagation has been confirmed to maximally retain corresponding patient tumor molecular 

characteristics (33,38,39). However, a notable weakness of orthotopic xenotransplantation is the uncertainty 

related to the length of time a mouse host can accommodate intracranial tumor before succumbing to tumor 

burden. Thus, orthotopically propagated tumors can be lost due to the unanticipated death of a tumor-bearing 

animal. Furthermore, orthotopic propagation is more limited with respect to the maximum size of tumor a single 

animal can yield, which is an important consideration for experiments requiring a large number of cells from a 

single engrafted animal. Heterotopic propagation has practical advantages that include the ability to directly 

visualize tumor growth, avoiding unexpected tumor-bearing animal deaths, and the generation of relatively large 

tumors that satisfy requirements for downstream experiments and further propagation. Heterotopic GBM PDX 

that have been used in support of studies published by multiple investigators are indicated in Table 3, along with 

some of the most commonly used and tumorigenic ECLs. 

A brain tumor PDX concept that has generated recent discussion involves the consideration of a PDX that can be 

generated and therapeutically tested within a time frame relevant for informing the treatment strategy of a patient 

from which the PDX is derived. This personalized approach, often referred to as “Avatar” modeling (40), is 

unrealistic in the vast majority of instances given the latency period of initial PDX establishment, length of time 

required for PDX expansion, intracranial growth characterization, and subsequent therapeutic testing in vivo 

relative to the typical aggressive clinical course of brain tumors in patients. A more realistic alternative involves 

the development of PDX panels that provide representation of several molecularly defined subclasses of a specific 

tumor histologic classification, such as GBM, and that could be used to test pre-existing and/or novel therapies.  

The results of testing such panels could then be used to select therapies, which are effective against a specific 
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molecular subtype of PDX, in treating a corresponding patient whose tumor has a similar molecular profile as a 

responsive PDX (41,42). 

 

Additional mouse brain tumor models 

Humanized mice.  Brain tumor initiation and progression not only reflects the occurrence and accumulation of 

mutations, but as well the coincident failure of the immune system to control tumor growth. Understanding how 

tumors affect host immunity is therefore a critical topic of investigation for achieving increased understanding of 

cancer immunobiology and for identifying therapeutic strategies that engage patient immune response against 

their cancer. Much of our understanding of interrelationships between brain cancer and immune response has 

stemmed from the results of studies utilizing syngeneic mouse brain tumor models. However, substantial 

differences exist between murine and human immune function, as well as cancer biology, so extrapolating from 

mouse to human may often carry with it a number of erroneous assumptions. The use of PDX models has largely 

precluded the study of immune response to tumor, due to the immunocompromised status of host mice. Recently, 

a humanized mouse model was described whereby NSG mice were engrafted with human fetal thymus and fetal 

liver-derived hematopoietic stem cells (43). Notably, the IL- -/- specific NOD-scid background supports 

human and murine hematopoietic cell engraftment, and suppresses human erythropoiesis, enhances human 

myelopoiesis, and reduces human B-lymphopoiesis in mice after transplant of bone marrow or liver cells (44), 

and HLA-matching can be provided for congruence with human tumor cell engraftment. NSG-SGM3-BLT mice 

possess a high level of human cell chimerism, and develop a mature immune system that includes human myeloid 

cells, T cells and B cells. Reports of humanized mouse models for studying human cancer are thus far infrequent, 

but seem likely to see substantial increase given the high level of interest in studying immunotherapies for treating 

cancer. 

 

RCAS-TVA. The RCAS-TVA mouse model, though not so widely used, has nonetheless been influential in 

advancing understanding of brain tumor development, and for testing therapeutics for treating brain tumors 

(45,46). The fundamentals of this mouse model start with a GEM that has undergone modification for promoter-

specific expression of a transgene encoding a retroviral receptor.  Promoters for GFAP and nestin have been 
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frequently used in this regard for modeling brain cancer. Mice with brain tissue specific expression of the viral 

receptor either receive an intracranial injection with retrovirus or with cells that produce retrovirus. The virus 

used in this setting has typically been modified to introduce an activated oncogene and/or express an shRNA 

against a tumor suppressor gene. Viral uptake by cells expressing viral receptor and viral transgene expression 

causes tumor development for certain transgene combinations.  In some instances, specific transgene 

combinations have been shown to cause consistent tumor formation, and in relatively short periods of time.  In 

such instances, these models have proven useful for therapeutic testing (47).  

 

Sleeping Beauty. A final model to mention involves use of the sleeping beauty approach, and in which virus is 

transduced into mouse cells for genomic insertion of a transposon, and expression of a transposase, which 

promotes transposon insertion at thousands of locations in recipient cells, ultimately aimed at the activation and/or 

inactivation of expressed sequences. This approach has been used almost exclusively for cancer gene discovery 

(48), and not for testing cancer therapies. 

 

Approaches for monitoring intracranial tumor growth and response the therapy. 

Survival analysis of orthotopically-injected rodents is the gold standard for conducting therapy-response studies 

with rodents bearing intracranial tumors, whether engrafted, induced, or spontaneously occurring. However, the 

time required for carrying out therapeutic efficacy studies based on survival endpoint criteria is often time 

consuming and provides a single metric from what is often a costly, and lengthy, experiment. Commonly used 

methods for obtaining in-experiment feedback, to complement survival results, include the timed euthanasia of 

animal subjects while on therapy, with subsequent analysis of brain tumor cell indicators of therapeutic activity, 

such as Ki-67 antibody staining for addressing proliferation effects of treatment, and TUNEL staining for 

determination of treatment effects on cell death. In immunocompetent animals undergoing immunotherapeutic 

evaluation, defined time point analyses are often used to examine brain tumor for immune cell infiltrates.  

 

Tumor imaging methods, for obtaining in-experiment results on intracranial tumor response to treatment, have 

seen steadily-increasing use in recent years. Longitudinal tumor imaging methods in live animal subjects (49) 

include magnetic resonance imaging (MRI), fluorescent optical imaging, and positron emission tomography 
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(PET). Additionally, bioluminescence imaging (BLI) is frequently used to detect the emission of photons from 

energy-dependent reactions involving the metabolism of exogenous luciferin substrate by cells that have been 

genetically modified to express luciferase. While D-luciferin has relatively poor distribution across an intact 

blood-brain barrier, D-luciferin imaging has been used successfully to evaluate response to therapies in orthotopic 

tumors in multiple studies, and a new generation of more brain penetrant synthetic luciferin will enhance the 

utility of this strategy. Notably, BLI studies have demonstrated a strong correlation between volumetric and 

treatment response (50), similar to MRI, with the benefit of a lower cost to operate, as well as lower overall labor 

requirement (51). Furthermore, the use of gadolinium-enhanced MRI normally requires the presence of 

specialized personnel for technical operation, which limits the analysis to individual mice and requires a several-

fold increase in imaging time (51). Also, and unlike fluorescent imaging of GFP+ or RFP+ labeled tumor cells, 

which can cause indeterminate signal-to-noise ratios as a result of high normal tissue autofluorescence, photon 

scattering and fluorophore photo-bleaching, BLI possesses minimal background activity, facilitating a remarkably 

sensitive quantification of increasing, or decreasing tumor size (50,51).   Regardless of the approach utilized, 

these methods can provide in-experiment feedback regarding therapeutic activity, or lack thereof.  

Conclusions.   

The investigation and benchmarking of novel therapeutics and administration strategies are likely to remain an 

essential part of preclinical research for translational bench-to-bedside laboratory-based discoveries.  As reviewed 

above, a number of models are available for facilitating and promoting discovery leading to improved care and 

outcomes for brain tumor patients (Table 4).  Rodent models are tools to be used for enabling discovery, and, as 

is the case for any tool, it is important that the “craftsman” knows which tools are most appropriate for a given 

circumstance. In this review we have provided an overview of available rodent models, or tools, and we look 

forward to reading of future discoveries from their application. 
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Table 1. Common immunocompetent, syngeneic brain tumor engraftment models 

 

Cell Line Syngeneic Strain Histology Host Reference 

SMA-560 VM/Dk AA Mouse 52 

CT-2A C57BL/6 AA Mouse 53 

GL261 C57BL/6 GBM Mouse 54 

GL26 C57BL/6 GBM Mouse 55 

4C8 B6D2F1 O, A Mouse 56 

9L Fisher Gliosarcoma Rat 1 

F98 Fisher GBM Rat 1 

RG2 Fisher Undiff. Glioma Rat 1 

CNS1 Lewis GBM Rat 1 
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Table 2. Common genetically engineered mouse (GEM) models use for studying brain tumors 

Model Histology Reference 

SV40 T-Ag (GFAP) A 56 

V12Ha-ras (GFAP) A, AA, GBM 8 

V12Ha-ras and EGFRvIII (GFAP) OA 57 

PDGF-B (MoMuLV-injection) GBM, PNET 58 

Nf1+/− and p53+/− (GFAP-Cre) A, AA, GBM 12 

K-ras and Akt (RCAS/tv-a/nestin) GBM 58 

PDGF-B (RCAS/tv-a/nestin) O 59 

PDGF-B (GFAP) OA 59 

PDGFB and Ink4a-Arf−/− (RCAS/tv-a; cre-lox to delete PTEN) A, AA, GBM, OA 46 

PDGFB and Arf−/− (GFAP or nestin) A, AA, GBM, OA 46 

PDGFB and p53−/− A, AA, GBM, OA 46 

PDGFB only A, AA, GBM, OA 46 

Pten, Trp53 (GFAP-CreER) HGA 60 

Pten, Trp53, Rb1 (GFAP-CreER) HGA 60 

Rb1, Trp53 (GFAP-CreER) HGA, PNET ONB 60 

Pten, Trp53 (Adeno-Cre) HGA 61 

Pten, Trp53, Rb1 (Adeno-Cre) PNET 61 

Rb1, Trp53 (Adeno-Cre) PNET 61 

Trp53 (GFAP-Cre) HGA 62 

EGFR vIII, Cdkn2a, Pten (Adeno-Cre) HGA 63 

Nf1, Trp53 (GFAP-Cre) HGA 64 

Nf1, Trp53, Pten (GFAP-Cre) HGA 13 

NF1, Trp53 (Nestin-CreER) HGA 65 

Nf1, Trp53, Pten (Nestin-CreER) HGA 65 

NF1, Trp53 (Adeno-CreER) HGA 65 

Nf1, Trp53, Pten (Adeno-CreER) HGA 65 

PDGFB, Pten (Retroviral PDGFB/Cre) HGA 66 

PDGFB, Pten, Trp53 (Retroviral PDGFB/Cre) HGA 66 
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Table 3. Common human tumor engraftment models 

Cell Line In Vitro or PDX Propagated Patient Origin Histology Reference 

U251MG In Vitro Adult GBM 67 

U87MG In Vitro Adult GBM 67 

T98G In Vitro Adult GBM 68 

GBM6 PDX Adult GBMψ 34 

GBM12 PDX Adult GBM* 34 

GBM14 PDX Adult GBM 34 

GBM39 PDX Adult GBM 34 

GBM43 PDX Adult GBM* 34 

UW467 In Vitro Pediatric AA 69 

UW479 In Vitro Pediatric AA 69 

CHLA-200 In Vitro Pediatric AA 70 

CHLA-07- In Vitro Pediatric non-DIPG 71 

SF188 In Vitro Pediatric GBM 72 

KNS-42 In Vitro Pediatric GBM 73 

bGB1 In Vitro Pediatric GBM 74 

D456MG In Vitro Pediatric HGG 75 

 

ψClassical Subtype 

*Proneural Subtype 
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Table 4. Advantages-Disadvantages* of Commonly Used Rodent Brain Tumor Models 

Syngeneic, Immunocompetent Engraftment Models 

Advantages 

 enable immunotherapy studies 
 numerous models 
 ease of tumor cell propagation 
 expandability/scalability 
 availability of host animals 
 synchronicity of tumor growth, within series of engrafted mice, is usually quite good 
 consistency and reproducibility of results, both within and between laboratories 
 cost 
 

Disadvantages: 

 cell heterogeneity diminished by extended culturing 
 invasive process for tumor establishment 
 do mutagen induced tumors have molecular profiles consistent with spontaneous tumors in patients? 
 are there inherent differences in the therapeutic response of rodent tumor cells and human tumor cells? 
 cell of origin? 
 

PDX Models 

Advantages 

 improved retention of patient tumor molecular characteristics, relative to cell culturing  
 numerous models have been developed, and model sharing is becoming more common 
 expandability/scalability 
 availability of animal hosts 
 synchronicity of intracranial tumor growth, within series of engrafted mice, is usually quite good 
 

Disadvantages 

 fewer labs familiar with in vivo tumor propagation; use of transferred models may require training 
 preparing cells from subcutaneous tumors for intracranial injection more complex and time consuming than 

harvesting cells from culture 
 problem of decreased heterogeneity with increased passaging 
 problem of changes to molecular and biologic properties with increased passaging  
 more expensive than working with cultured cells 
 

Genetically Engineered Mice (GEM), Contemporary Models 

Advantages 

 temporal as well as spatial/anatomic control of tumor development 
 absence of invasive procedure to initiate tumor development 
 tumor development is tissue and/or cell type restricted 
 mice are immunocompetent 
 

Disadvantages 

 tumor development can be multifocal, and therefore not consistent with the presentation of tumor in most 
patients 

 dependent upon the specific GEM, tumor development within a series of mice can be very asynchronous 
 cost and complexity of developing and maintaining mice with multiple genetic alterations 
 

* All models share a disadvantage of requiring the use of an imaging technique to monitor tumor growth and 
response to therapy. 
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